TY - JOUR
T1 - Weight Prediction Using the Hybrid Stacked-LSTM Food Selection Model
AU - Elshewey, Ahmed M.
AU - Shams, Mahmoud Y.
AU - Tarek, Zahraa
AU - Megahed, Mohamed
AU - El-Kenawy, El Sayed M.
AU - El-Dosuky, Mohamed A.
N1 - Publisher Copyright:
© 2023 CRL Publishing. All rights reserved.
PY - 2023
Y1 - 2023
N2 - Food choice motives (i.e., mood, health, natural content, convenience, sensory appeal, price, familiarities, ethical concerns, and weight control) have an important role in transforming the current food system to ensure the healthiness of people and the sustainability of the world. Researchers from several domains have presented several models addressing issues influencing food choice over the years. However, a multidisciplinary approach is required to better understand how various aspects interact with one another during the decision-making procedure. In this paper, four Deep Learning (DL) models and one Machine Learning (ML) model are utilized to predict the weight in pounds based on food choices. The Long Short-Term Memory (LSTM) model, stacked-LSTM model, Conventional Neural Network (CNN) model, and CNN-LSTM model are the used deep learning models. While the applied ML model is the K-Nearest Neighbor (KNN) regressor. The efficiency of the proposed model was determined based on the error rate obtained from the experimental results. The findings indicated that Mean Absolute Error (MAE) is 0.0087, the Mean Square Error (MSE) is 0.00011, the Median Absolute Error (MedAE) is 0.006, the Root Mean Square Error (RMSE) is 0.011, and the Mean Absolute Percentage Error (MAPE) is 21. Therefore, the results demonstrated that the stacked LSTM achieved improved results compared with the LSTM, CNN, CNN-LSTM, and KNN regressor.
AB - Food choice motives (i.e., mood, health, natural content, convenience, sensory appeal, price, familiarities, ethical concerns, and weight control) have an important role in transforming the current food system to ensure the healthiness of people and the sustainability of the world. Researchers from several domains have presented several models addressing issues influencing food choice over the years. However, a multidisciplinary approach is required to better understand how various aspects interact with one another during the decision-making procedure. In this paper, four Deep Learning (DL) models and one Machine Learning (ML) model are utilized to predict the weight in pounds based on food choices. The Long Short-Term Memory (LSTM) model, stacked-LSTM model, Conventional Neural Network (CNN) model, and CNN-LSTM model are the used deep learning models. While the applied ML model is the K-Nearest Neighbor (KNN) regressor. The efficiency of the proposed model was determined based on the error rate obtained from the experimental results. The findings indicated that Mean Absolute Error (MAE) is 0.0087, the Mean Square Error (MSE) is 0.00011, the Median Absolute Error (MedAE) is 0.006, the Root Mean Square Error (RMSE) is 0.011, and the Mean Absolute Percentage Error (MAPE) is 21. Therefore, the results demonstrated that the stacked LSTM achieved improved results compared with the LSTM, CNN, CNN-LSTM, and KNN regressor.
KW - CNN
KW - KNN
KW - LSTM
KW - Weight prediction
KW - deep learning
KW - machine learning
UR - http://www.scopus.com/inward/record.url?scp=85147428119&partnerID=8YFLogxK
U2 - 10.32604/csse.2023.034324
DO - 10.32604/csse.2023.034324
M3 - Article
AN - SCOPUS:85147428119
SN - 0267-6192
VL - 46
SP - 765
EP - 781
JO - Computer Systems Science and Engineering
JF - Computer Systems Science and Engineering
IS - 1
ER -