TY - JOUR
T1 - Topical delivery of bioactive compounds from Cortex Dictamni alleviates atopic dermatitis-like lesion by inhibiting the activation of keratinocytes, macrophages, and basophils
T2 - Dictamnine versus fraxinellone
AU - Chou, Wei Ling
AU - Yang, Shih Chun
AU - Alshetaili, Abdullah
AU - Wei, Shih Hsuan
AU - Yang, Sien Hung
AU - Fang, Jia You
N1 - Publisher Copyright:
© 2024 Elsevier B.V.
PY - 2024/12/25
Y1 - 2024/12/25
N2 - Dictamnine and fraxinellone constitute the primary alkaloid and limonoid components in Cortex Dictamni, respectively. Both compounds exhibit anti-inflammatory properties. This study aims to assess the ability of dictamnine and fraxinellone in treating atopic dermatitis (AD) through in silico-, cell-, and animal-based experiments. The effects of these compounds on the coordinated activation of keratinocytes, macrophages, and basophils in AD development were investigated. A dinitrochlorobenzene (DNCB)-sensitized AD model in mice was employed to examine the in vivo anti-AD effects. Dictamnine and fraxinellone effectively reduced the release of proinflammatory effectors, including interleukin (IL)-4, IL-13, chemokine (C–C motif) ligand (CCL)5, and CCL17, by suppressing extracellular signal-regulated kinase (ERK) signaling in activated keratinocytes. The conditioned medium from dictamnine-treated macrophages reduced signal transducer and activator of transcription (STAT)3 in keratinocytes by 39 %, indicating the inhibition of keratinocytes-immune cell interaction. Both compounds comparably suppressed RBL-2H3 cell degranulation by decreasing histamine production. In vitro permeation test (IVPT) demonstrated three-fold greater skin absorption of topically applied dictamnine than fraxinellone. The in silico molecular docking manifested a preferable ceramide interaction with dictamnine over fraxinellone. Topical application of dictamnine decreased the mouse skin lesion development and the overexpressed cytokines/chemokines. This attenuation is comparable to the activity of tacrolimus ointment, a standard clinical treatment. Histological analysis revealed that dictamnine inhibited epidermal proliferation, reducing thickness from 220 to 97 μm. However, dictamnine did not restore the barrier function, as evidenced by the results of filaggrin and loricrin expression and in vivo transepidermal water loss (TEWL). The findings suggest that topical dictamnine can be a promising agent for alleviating AD inflammation.
AB - Dictamnine and fraxinellone constitute the primary alkaloid and limonoid components in Cortex Dictamni, respectively. Both compounds exhibit anti-inflammatory properties. This study aims to assess the ability of dictamnine and fraxinellone in treating atopic dermatitis (AD) through in silico-, cell-, and animal-based experiments. The effects of these compounds on the coordinated activation of keratinocytes, macrophages, and basophils in AD development were investigated. A dinitrochlorobenzene (DNCB)-sensitized AD model in mice was employed to examine the in vivo anti-AD effects. Dictamnine and fraxinellone effectively reduced the release of proinflammatory effectors, including interleukin (IL)-4, IL-13, chemokine (C–C motif) ligand (CCL)5, and CCL17, by suppressing extracellular signal-regulated kinase (ERK) signaling in activated keratinocytes. The conditioned medium from dictamnine-treated macrophages reduced signal transducer and activator of transcription (STAT)3 in keratinocytes by 39 %, indicating the inhibition of keratinocytes-immune cell interaction. Both compounds comparably suppressed RBL-2H3 cell degranulation by decreasing histamine production. In vitro permeation test (IVPT) demonstrated three-fold greater skin absorption of topically applied dictamnine than fraxinellone. The in silico molecular docking manifested a preferable ceramide interaction with dictamnine over fraxinellone. Topical application of dictamnine decreased the mouse skin lesion development and the overexpressed cytokines/chemokines. This attenuation is comparable to the activity of tacrolimus ointment, a standard clinical treatment. Histological analysis revealed that dictamnine inhibited epidermal proliferation, reducing thickness from 220 to 97 μm. However, dictamnine did not restore the barrier function, as evidenced by the results of filaggrin and loricrin expression and in vivo transepidermal water loss (TEWL). The findings suggest that topical dictamnine can be a promising agent for alleviating AD inflammation.
KW - Atopic dermatitis
KW - Cortex Dictamni
KW - Dictamnine
KW - Fraxinellone
KW - Inflammation
KW - Skin delivery
UR - http://www.scopus.com/inward/record.url?scp=85207714358&partnerID=8YFLogxK
U2 - 10.1016/j.intimp.2024.113486
DO - 10.1016/j.intimp.2024.113486
M3 - Article
C2 - 39467349
AN - SCOPUS:85207714358
SN - 1567-5769
VL - 143
JO - International Immunopharmacology
JF - International Immunopharmacology
M1 - 113486
ER -