TY - JOUR
T1 - Thermal examination of chemically reactive Casson ternary hybrid nano°uid °ow on bi-directional stretching sheet subject to Cattaneo{Christov mass/heat °ux phenomena, variable porosity and exponential heat source
AU - Lone, Showkat Ahmad
AU - Al-Essa, Laila A.
AU - Al-Bossly, Afrah
AU - Alduais, Fuad S.
AU - Khan, Arshad
AU - Saeed, Anwar
N1 - Publisher Copyright:
© 2025 World Scientific Publishing Company.
PY - 2025/5/10
Y1 - 2025/5/10
N2 - This work investigates the Casson ternary hybrid nano°uid °ow on a dual-directional elongating surface with variable porosity. The °ow is a®ected by chemical reactivity, exponential heat source and thermally radiative e®ects. To control the thermal feature of °ow, the impacts of Brownian motion and thermophoresis are also incorporated in the °ow model along with Cattaneo{Christov mass/heat °ux phenomena. Appropriate variables have been employed to convert the leading equations to dimension-free form and then solved by using the bvp4c approach. It has been noticed as an outcome of this work that, with the upsurge in magnetic and variable porous factors, both the primary and secondary velocities have been diminished. Augmentation in thermal profiles is caused by the escalation in radiation, thermophoresis, Brownian motion factors and thermal Biot number while it has reduced with the upsurge in thermal relaxation factor. Concentration distribution has increased by the growth in thermophoresis, activation energy factors and concentration Biot number, whereas it has diminished with escalation in Brownian motion, chemical reactivity and mass relaxation factors. Moreover, concentration distribution also declined with a higher Schmidt number. To ensure the validation of the current model, its results have been compared with previously established datasets available in the literature. A closed agreement between our results and the dataset published previously has been noticed, which ensures the authenticity of the current work.
AB - This work investigates the Casson ternary hybrid nano°uid °ow on a dual-directional elongating surface with variable porosity. The °ow is a®ected by chemical reactivity, exponential heat source and thermally radiative e®ects. To control the thermal feature of °ow, the impacts of Brownian motion and thermophoresis are also incorporated in the °ow model along with Cattaneo{Christov mass/heat °ux phenomena. Appropriate variables have been employed to convert the leading equations to dimension-free form and then solved by using the bvp4c approach. It has been noticed as an outcome of this work that, with the upsurge in magnetic and variable porous factors, both the primary and secondary velocities have been diminished. Augmentation in thermal profiles is caused by the escalation in radiation, thermophoresis, Brownian motion factors and thermal Biot number while it has reduced with the upsurge in thermal relaxation factor. Concentration distribution has increased by the growth in thermophoresis, activation energy factors and concentration Biot number, whereas it has diminished with escalation in Brownian motion, chemical reactivity and mass relaxation factors. Moreover, concentration distribution also declined with a higher Schmidt number. To ensure the validation of the current model, its results have been compared with previously established datasets available in the literature. A closed agreement between our results and the dataset published previously has been noticed, which ensures the authenticity of the current work.
KW - Brownian motion
KW - Casson °uid
KW - Cattaneo{Christov mass/heat °ux
KW - Ternary hybrid nano°uid
KW - chemical reaction
KW - stretching sheet
KW - thermophoresis
KW - variable porous space
UR - http://www.scopus.com/inward/record.url?scp=86000434438&partnerID=8YFLogxK
U2 - 10.1142/S0217984924504967
DO - 10.1142/S0217984924504967
M3 - Article
AN - SCOPUS:86000434438
SN - 0217-9849
VL - 39
JO - Modern Physics Letters B
JF - Modern Physics Letters B
IS - 13
M1 - 2450496
ER -