The Baffle Length Effects on the Natural Convection in Nanofluid-Filled Square Enclosure with Sinusoidal Temperature

Khaled Al-Farhany, Barik Al-Muhja, Farhan Ali, Umair Khan, Aurang Zaib, Zehba Raizah, Ahmed M. Galal

Research output: Contribution to journalArticlepeer-review

24 Scopus citations

Abstract

The proper process of applying heat to many technological devices is a significant challenge. There are many nanofluids of different sizes used inside the system. The current study combines this potential to improve convection effects, considering numerical simulations of natural convection using Cu/water nanofluids in a square enclosure with bottom blocks embedded in baffles. The enclosure consists of two vertical walls with isothermal boundary conditions; the left wall is the sinusoidal heat source, whereas the right wall is cooled. The investigations dealt with the influences of nanoparticle concentration, Rayleigh number, baffle length, and thermal conductivity ratioon isotherms, stream functions, and average Nusselt number. The results present that, when the Rayleigh number rises, the fluid flow velocity increases, and the heat transfer improves. Furthermore, the baffle length case (Lb = 0.3) provides higher heat transfer characteristics than other baffle height cases.

Original languageEnglish
Article number4445
JournalMolecules
Volume27
Issue number14
DOIs
StatePublished - Jul 2022

Keywords

  • Rayleigh number
  • baffle
  • nanofluid
  • natural convection
  • sinusoidal temperature distribution

Fingerprint

Dive into the research topics of 'The Baffle Length Effects on the Natural Convection in Nanofluid-Filled Square Enclosure with Sinusoidal Temperature'. Together they form a unique fingerprint.

Cite this