TY - JOUR
T1 - The Ameliorative Role of Hibiscetin against High-Fat Diets and Streptozotocin-Induced Diabetes in Rodents via Inhibiting Tumor Necrosis Factor-α, Interleukin-1β, and Malondialdehyde Level
AU - Gilani, Sadaf Jamal
AU - Bin-Jumah, May Nasser
AU - Al-Abbasi, Fahad A.
AU - Albohairy, Fatima M.
AU - Nadeem, M. S.
AU - Ahmed, Mohammed Muqtader
AU - Alzarea, Sami I.
AU - Kazmi, Imran
N1 - Publisher Copyright:
© 2022 by the authors.
PY - 2022/7
Y1 - 2022/7
N2 - Hibiscetin, as one of the main bioactive constituents of Hibiscus sabdariffa, has many pharmacological activities, but its antihyperglycemic activity has not been fully interpreted yet. The current research was developed from this perspective. The study intended to appraise the antidiabetic capability of hibiscetin in a high-fat diet (HFD) and streptozotocin (STZ; 50 mg/kg, intraperitoneally)-induced diabetes in an experimental animal. The efficiency of hibiscetin at 10 mg/kg in an “HFD/STZ model” remedy in rats with experimentally caused diabetes was explored for 42 days. The efficacy of hibiscetin was observed on several diabetes parameters. The average body weight and an array of biochemical markers were determined, including blood glucose, insulin, total protein (TP), lipid profile, aspartate aminotransferase (AST), alanine aminotransferase (ALT), IL-6, IL-1β, tumor necrosis factor-α (TNF-α), adiponectin, leptin, resistin, malondialdehyde (MDA), catalase (CAT), glutathione (GSH), and superoxide dismutase (SOD). The antidiabetic benefits of hibiscetin were proven by a substantial reduction in blood glucose, lipid profile (TC and TG), total protein, IL-6, IL-1β, MDA, TNF-α, leptin, adiponectin, ALT, and AST in the therapy group compared to the diabetic disease standard. Furthermore, hibiscetin therapy also reversed the lowered levels of insulin, resistin, GSH, SOD, and CAT in diabetic rats. It was determined that hibiscetin may be beneficial in terms of reducing diabetes problems due to its effects on both oxidative stress and inflammation and that more research for this design should be conducted.
AB - Hibiscetin, as one of the main bioactive constituents of Hibiscus sabdariffa, has many pharmacological activities, but its antihyperglycemic activity has not been fully interpreted yet. The current research was developed from this perspective. The study intended to appraise the antidiabetic capability of hibiscetin in a high-fat diet (HFD) and streptozotocin (STZ; 50 mg/kg, intraperitoneally)-induced diabetes in an experimental animal. The efficiency of hibiscetin at 10 mg/kg in an “HFD/STZ model” remedy in rats with experimentally caused diabetes was explored for 42 days. The efficacy of hibiscetin was observed on several diabetes parameters. The average body weight and an array of biochemical markers were determined, including blood glucose, insulin, total protein (TP), lipid profile, aspartate aminotransferase (AST), alanine aminotransferase (ALT), IL-6, IL-1β, tumor necrosis factor-α (TNF-α), adiponectin, leptin, resistin, malondialdehyde (MDA), catalase (CAT), glutathione (GSH), and superoxide dismutase (SOD). The antidiabetic benefits of hibiscetin were proven by a substantial reduction in blood glucose, lipid profile (TC and TG), total protein, IL-6, IL-1β, MDA, TNF-α, leptin, adiponectin, ALT, and AST in the therapy group compared to the diabetic disease standard. Furthermore, hibiscetin therapy also reversed the lowered levels of insulin, resistin, GSH, SOD, and CAT in diabetic rats. It was determined that hibiscetin may be beneficial in terms of reducing diabetes problems due to its effects on both oxidative stress and inflammation and that more research for this design should be conducted.
KW - HFD/STZ model
KW - antidiabetic activity
KW - hibiscetin
KW - malondialdehyde
KW - tumor necrosis factor-α
UR - http://www.scopus.com/inward/record.url?scp=85137354438&partnerID=8YFLogxK
U2 - 10.3390/pr10071396
DO - 10.3390/pr10071396
M3 - Article
AN - SCOPUS:85137354438
SN - 2227-9717
VL - 10
JO - Processes
JF - Processes
IS - 7
M1 - 1396
ER -