TY - JOUR
T1 - Synthesis of some quinoline-pyrazoline-based naphthalenyl thiazole derivatives and their evaluation as potential antimicrobial agents
AU - Imran, Mohd
AU - Bakht, Mohammed Afroz
AU - Samad, Abdul
AU - Abida,
N1 - Publisher Copyright:
© Pharmacotherapy Group, Faculty of Pharmacy, University of Benin, Benin City, 300001 Nigeria. All rights reserved.
PY - 2017
Y1 - 2017
N2 - Purpose: To prepare and evaluate some quinoline-pyrazoline-based naphthalenyl thiazole derivatives as antimicrobial agents. Methods: Some quinoline-pyrazoline-based naphthalenyl thiazoles (5a-5e and 6a-6e) were prepared by reacting 5-(2-chloroquinolin-3-yl)-3-substitutedphenyl-4,5-dihydro-1H-pyrazole-1-carbothiamides (4a-4e) with 2-bromo-1-(1-naphthyl)ethanone and 2-bromo-1-(2-naphthyl)ethanone, respectively. Fourier transform infra-red (FTIR), 13C-Nuclear magnetic resonance (13C-NMR), 1H-Nuclear magnetic resonance (1H-NMR), elemental analysis, and mass spectrometry were used to elucidate and confirm the chemical structures of the target compounds. Serial plate dilution technique was used to evaluate the antimicrobial activity of the title compounds using ketoconazole and ofloxacin as standards, and their minimum inhibitory concentrations (MIC) were determined. Results: A total of ten compounds, (5a-5e) & (6a-6e) were prepared. Compound 6d (R = 4-F, naphthalen-2-yl derivative) exhibited antimicrobial activities that were higher than those of the standard drug (ofloxacin) against S. aureus (MIC = 25 μg/mL, p < 0.05), S. epidermidis (MIC = 25 μg/mL, p < 0.0001), K. pneumonia (MIC = 25 μg/mL, p < 0.0001), P. vulgaris (MIC = 25 μg/mL, p < 0.0001) and P. citrinum (MIC = 25 μg/mL, p < 0.0001). Compound 5d (R = 4-F, naphthalen-1-yl derivative) displayed higher antifungal activity than ketoconazole against C. albicans (MIC = 25 μg/mL, p <0.0001). Conclusion: The naphthalen-2-yl derivatives (6a-6e) are superior antimicrobial agents as compared to the naphthalen-1-yl derivatives (5a-5e) and the presence of 4-F substituent in 6d and 5d is essential for stronger antimicrobial activity. The compound 6d needs further investigations related to its safety and efficacy.
AB - Purpose: To prepare and evaluate some quinoline-pyrazoline-based naphthalenyl thiazole derivatives as antimicrobial agents. Methods: Some quinoline-pyrazoline-based naphthalenyl thiazoles (5a-5e and 6a-6e) were prepared by reacting 5-(2-chloroquinolin-3-yl)-3-substitutedphenyl-4,5-dihydro-1H-pyrazole-1-carbothiamides (4a-4e) with 2-bromo-1-(1-naphthyl)ethanone and 2-bromo-1-(2-naphthyl)ethanone, respectively. Fourier transform infra-red (FTIR), 13C-Nuclear magnetic resonance (13C-NMR), 1H-Nuclear magnetic resonance (1H-NMR), elemental analysis, and mass spectrometry were used to elucidate and confirm the chemical structures of the target compounds. Serial plate dilution technique was used to evaluate the antimicrobial activity of the title compounds using ketoconazole and ofloxacin as standards, and their minimum inhibitory concentrations (MIC) were determined. Results: A total of ten compounds, (5a-5e) & (6a-6e) were prepared. Compound 6d (R = 4-F, naphthalen-2-yl derivative) exhibited antimicrobial activities that were higher than those of the standard drug (ofloxacin) against S. aureus (MIC = 25 μg/mL, p < 0.05), S. epidermidis (MIC = 25 μg/mL, p < 0.0001), K. pneumonia (MIC = 25 μg/mL, p < 0.0001), P. vulgaris (MIC = 25 μg/mL, p < 0.0001) and P. citrinum (MIC = 25 μg/mL, p < 0.0001). Compound 5d (R = 4-F, naphthalen-1-yl derivative) displayed higher antifungal activity than ketoconazole against C. albicans (MIC = 25 μg/mL, p <0.0001). Conclusion: The naphthalen-2-yl derivatives (6a-6e) are superior antimicrobial agents as compared to the naphthalen-1-yl derivatives (5a-5e) and the presence of 4-F substituent in 6d and 5d is essential for stronger antimicrobial activity. The compound 6d needs further investigations related to its safety and efficacy.
KW - Antibacterial
KW - Antifungal
KW - Pyrazoline
KW - Quinoline
KW - Structure-activity relationship
KW - Thiazole
UR - http://www.scopus.com/inward/record.url?scp=85020068589&partnerID=8YFLogxK
U2 - 10.4314/tjpr.v16i5.24
DO - 10.4314/tjpr.v16i5.24
M3 - Article
AN - SCOPUS:85020068589
SN - 1596-5996
VL - 16
SP - 1147
EP - 1155
JO - Tropical Journal of Pharmaceutical Research
JF - Tropical Journal of Pharmaceutical Research
IS - 5
ER -