TY - JOUR
T1 - Synergistic inhibitive effect of a hybrid zinc oxide-benzalkonium chloride composite on the corrosion of carbon steel in a sulfuric acidic solution
AU - Albeladi, Muntathir
AU - Geesi, Mohammed H.
AU - Riadi, Yassine
AU - Alahiane, Mustapha
AU - Aljohani, Talal A.
AU - Berisha, Avni
AU - Reka, Arianit
AU - Kaiba, Abdellah
AU - Ouerghi, Oussama
N1 - Publisher Copyright:
© 2023 the author(s), published by De Gruyter.
PY - 2023/1/1
Y1 - 2023/1/1
N2 - Zinc oxide and quaternary ammonium-type surfactants have been separately recognized for their anti-corrosive efficiencies. Their composite, not investigated so far, could provide a synergetic anti-corrosion effect. In this respect, the aim of this study is to synthesize a composite material consisting of zinc oxide and benzalkonium chloride (ZnO-BAC) in varying mass ratios (3:1, 1:1, and 1:3). The inhibitory properties of the ZnO-BAC composite against carbon steel corrosion in a 0.5 M sulfuric acid solution were assessed under ambient conditions. First, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy were used to examine the chemical structure of the prepared composite. Then, the corrosion inhibitive performance of the devised inhibitors was screened using electrochemical, hydrogen collection, and weight loss measurements. Further, the surface morphology was examined using a scanning electron microscope, both before and after immersion in the corrosion medium. The electrochemical measurements indicate that the prepared inhibitor exhibits a predominant cathodic inhibition behavior and the maximum inhibition efficiency, approximately 91.9%, was achieved for one-to-one mass ratio. Similar results were obtained from weight loss and hydrogen evolution measurements, which showed that the ZnO-BAC composite reduced the corrosion rate of carbon steel by 69.9% and 64.9%, respectively. Finally, molecular dynamics and an adsorption equilibrium model were used to elucidate the mechanism of corrosion inhibition by the ZnO-BAC composite, which exhibits a high adsorption energy on the iron surface.
AB - Zinc oxide and quaternary ammonium-type surfactants have been separately recognized for their anti-corrosive efficiencies. Their composite, not investigated so far, could provide a synergetic anti-corrosion effect. In this respect, the aim of this study is to synthesize a composite material consisting of zinc oxide and benzalkonium chloride (ZnO-BAC) in varying mass ratios (3:1, 1:1, and 1:3). The inhibitory properties of the ZnO-BAC composite against carbon steel corrosion in a 0.5 M sulfuric acid solution were assessed under ambient conditions. First, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy were used to examine the chemical structure of the prepared composite. Then, the corrosion inhibitive performance of the devised inhibitors was screened using electrochemical, hydrogen collection, and weight loss measurements. Further, the surface morphology was examined using a scanning electron microscope, both before and after immersion in the corrosion medium. The electrochemical measurements indicate that the prepared inhibitor exhibits a predominant cathodic inhibition behavior and the maximum inhibition efficiency, approximately 91.9%, was achieved for one-to-one mass ratio. Similar results were obtained from weight loss and hydrogen evolution measurements, which showed that the ZnO-BAC composite reduced the corrosion rate of carbon steel by 69.9% and 64.9%, respectively. Finally, molecular dynamics and an adsorption equilibrium model were used to elucidate the mechanism of corrosion inhibition by the ZnO-BAC composite, which exhibits a high adsorption energy on the iron surface.
KW - benzalkonium chloride
KW - carbon steel
KW - corrosion inhibitors
KW - DFT
KW - zinc oxide
UR - http://www.scopus.com/inward/record.url?scp=85183315205&partnerID=8YFLogxK
U2 - 10.1515/gps-2023-0139
DO - 10.1515/gps-2023-0139
M3 - Article
AN - SCOPUS:85183315205
SN - 2191-9542
VL - 12
JO - Green Processing and Synthesis
JF - Green Processing and Synthesis
IS - 1
M1 - 20230139
ER -