TY - JOUR
T1 - SUQ-3
T2 - A Three Stage Coarse-to-Fine Compression Framework for Sustainable Edge AI in Smart Farming
AU - Vaiyapuri, Thavavel
AU - Aldosari, Huda
N1 - Publisher Copyright:
© 2025 by the authors.
PY - 2025/6
Y1 - 2025/6
N2 - Artificial intelligence of things (AIoT) has become a pivotal enabler of precision agriculture by supporting real-time, data-driven decision-making at the edge. Deep learning (DL) models are central to this paradigm, offering powerful capabilities for analyzing environmental and climatic data in a range of agricultural applications. However, deploying these models on edge devices remains challenging due to constraints in memory, computation, and energy. Existing model compression techniques predominantly target large-scale 2D architectures, with limited attention to one-dimensional (1D) models such as gated recurrent units (GRUs), which are commonly employed for processing sequential sensor data. To address this gap, we propose a novel three-stage coarse-to-fine compression framework, termed SUQ-3 (Structured, Unstructured Pruning, and Quantization), designed to optimize 1D DL models for efficient edge deployment in AIoT applications. The SUQ-3 framework sequentially integrates (1) structured pruning with an (Formula presented.) sparsity pattern to induce hardware-friendly, coarse-grained sparsity; (2) unstructured pruning to eliminate low-magnitude weights for fine-grained compression; and (3) quantization, applied post quantization-aware training (QAT), to support low-precision inference with minimal accuracy loss. We validate the proposed SUQ-3 by compressing a GRU-based crop recommendation model trained on environmental and climatic data from an agricultural dataset. Experimental results show a model size reduction of approximately 85% and an 80% improvement in inference latency while preserving high predictive accuracy (F1 score: 0.97 vs. baseline: 0.9837). Notably, when deployed on a mobile edge device using TensorFlow Lite, the SUQ-3 model achieved an estimated energy consumption of 1.18 μJ per inference, representing a 74.4% reduction compared with the baseline and demonstrating its potential for sustainable low-power AI deployment in agricultural environments. Although demonstrated in an agricultural AIoT use case, the generality and modularity of SUQ-3 make it applicable to a broad range of DL models across domains requiring efficient edge intelligence.
AB - Artificial intelligence of things (AIoT) has become a pivotal enabler of precision agriculture by supporting real-time, data-driven decision-making at the edge. Deep learning (DL) models are central to this paradigm, offering powerful capabilities for analyzing environmental and climatic data in a range of agricultural applications. However, deploying these models on edge devices remains challenging due to constraints in memory, computation, and energy. Existing model compression techniques predominantly target large-scale 2D architectures, with limited attention to one-dimensional (1D) models such as gated recurrent units (GRUs), which are commonly employed for processing sequential sensor data. To address this gap, we propose a novel three-stage coarse-to-fine compression framework, termed SUQ-3 (Structured, Unstructured Pruning, and Quantization), designed to optimize 1D DL models for efficient edge deployment in AIoT applications. The SUQ-3 framework sequentially integrates (1) structured pruning with an (Formula presented.) sparsity pattern to induce hardware-friendly, coarse-grained sparsity; (2) unstructured pruning to eliminate low-magnitude weights for fine-grained compression; and (3) quantization, applied post quantization-aware training (QAT), to support low-precision inference with minimal accuracy loss. We validate the proposed SUQ-3 by compressing a GRU-based crop recommendation model trained on environmental and climatic data from an agricultural dataset. Experimental results show a model size reduction of approximately 85% and an 80% improvement in inference latency while preserving high predictive accuracy (F1 score: 0.97 vs. baseline: 0.9837). Notably, when deployed on a mobile edge device using TensorFlow Lite, the SUQ-3 model achieved an estimated energy consumption of 1.18 μJ per inference, representing a 74.4% reduction compared with the baseline and demonstrating its potential for sustainable low-power AI deployment in agricultural environments. Although demonstrated in an agricultural AIoT use case, the generality and modularity of SUQ-3 make it applicable to a broad range of DL models across domains requiring efficient edge intelligence.
KW - AIoT
KW - dynamic pruning
KW - energy-aware deep learning
KW - lightweight 1D
KW - low-carbon AI
KW - QAT
KW - quantization
KW - resource optimization
KW - smart farming
UR - http://www.scopus.com/inward/record.url?scp=105008994661&partnerID=8YFLogxK
U2 - 10.3390/su17125230
DO - 10.3390/su17125230
M3 - Article
AN - SCOPUS:105008994661
SN - 2071-1050
VL - 17
JO - Sustainability (Switzerland)
JF - Sustainability (Switzerland)
IS - 12
M1 - 5230
ER -