TY - JOUR
T1 - Spectroscopic Analysis of Bioactive Compounds from Latex of Calotropis gigantea L. and an Evaluation of Its Biological Activities
AU - Jayalekshmi, C.
AU - Periakaruppan, Rajiv
AU - Vijai Selvaraj, Karungan Selvaraj
AU - Al-Dayan, Noura
N1 - Publisher Copyright:
© 2024 by the authors.
PY - 2024/9
Y1 - 2024/9
N2 - The current research investigation aimed to screen the bioactive compounds in the latex of Calotropis gigantea L. and evaluate its antibacterial and antioxidant properties towards clinical applications. The chemical moiety and volatile compounds of the latex of C. gigantea were detected by UV–Vis spectroscopy, FT-IR, and GC–MS analysis. The antibacterial activity was assessed using wound-inducing pathogens by well diffusion method. In addition, the antioxidant properties were determined through DPPH, ABTS, and FRAP methods. The functional groups of O–H stretch, diketonic bonds, C–O, C–N, O–C bonds, and consecutive C–H bonds were observed in the latex of C. gigantea. The major bioactive compounds were 5H-3,5a-Epoxynaphth[2,1-c]oxepin, Cholesta-5-en-3-ol, 24-propylidene-, dodecane, Lup-20(29)-Ene-3,28-Diol, (3.Beta)-, Veridiflorol, and Lanosta-8,24-dien-3-ol, acetatate, (3.beta.). Oxazole derivatives were found in the latex of C. gigantea, proved by GC–MS analysis. The aqueous-mixed latex exhibited maximum antioxidant activity as compared to methanol-mixed latex. Aqueous-mixed latex and methanol-mixed latex inhibited the growth of K. pneumoniae, P. mirabilis, S. pyogenes, Micrococcus spp., S. aureus, P. aeruginosa, and E. coli. The present study clearly reveals that latex of C. gigantea has rich bioactive compounds with significant biological activities, and can be employed to produce a novel herbal formulation against wound-inducing pathogens.
AB - The current research investigation aimed to screen the bioactive compounds in the latex of Calotropis gigantea L. and evaluate its antibacterial and antioxidant properties towards clinical applications. The chemical moiety and volatile compounds of the latex of C. gigantea were detected by UV–Vis spectroscopy, FT-IR, and GC–MS analysis. The antibacterial activity was assessed using wound-inducing pathogens by well diffusion method. In addition, the antioxidant properties were determined through DPPH, ABTS, and FRAP methods. The functional groups of O–H stretch, diketonic bonds, C–O, C–N, O–C bonds, and consecutive C–H bonds were observed in the latex of C. gigantea. The major bioactive compounds were 5H-3,5a-Epoxynaphth[2,1-c]oxepin, Cholesta-5-en-3-ol, 24-propylidene-, dodecane, Lup-20(29)-Ene-3,28-Diol, (3.Beta)-, Veridiflorol, and Lanosta-8,24-dien-3-ol, acetatate, (3.beta.). Oxazole derivatives were found in the latex of C. gigantea, proved by GC–MS analysis. The aqueous-mixed latex exhibited maximum antioxidant activity as compared to methanol-mixed latex. Aqueous-mixed latex and methanol-mixed latex inhibited the growth of K. pneumoniae, P. mirabilis, S. pyogenes, Micrococcus spp., S. aureus, P. aeruginosa, and E. coli. The present study clearly reveals that latex of C. gigantea has rich bioactive compounds with significant biological activities, and can be employed to produce a novel herbal formulation against wound-inducing pathogens.
KW - antimicrobial
KW - antioxidant
KW - bioactive compounds
KW - C. gigantea
KW - latex
UR - http://www.scopus.com/inward/record.url?scp=85205223881&partnerID=8YFLogxK
U2 - 10.3390/analytica5030024
DO - 10.3390/analytica5030024
M3 - Article
AN - SCOPUS:85205223881
SN - 2673-4532
VL - 5
SP - 384
EP - 401
JO - Analytica
JF - Analytica
IS - 3
ER -