Solubility and solution thermodynamics of raloxifene hydrochloride in various (DMSO + water) compositions: Solubility and solution thermodynamics of raloxifene hydrochloride

Mohammad Alyamani, Sultan Alshehri, Prawez Alam, Shahid Ud Din Wani, Mohammed M. Ghoneim, Faiyaz Shakeel

Research output: Contribution to journalArticlepeer-review

13 Scopus citations

Abstract

The solubility of the poorly soluble drug raloxifene hydrochloride (3) in binary {dimethyl sulfoxide (DMSO) (1) + water (2)} mixtures have been recorded at several temperatures under atmospheric pressure. Four different computational models were applied to model the experimental solubility values of studied drug. Raloxifene hydrochloride mole fraction solubility was improved with higher temperature and DMSO mass fraction in {(DMSO) (1) + water (2)} compositions. Pure DMSO had the maximum mole fraction solubility of raloxifene hydrochloride (5.05 × 10–2 at 323.2 K), while pure water had the lowest (1.051 × 10–5 at 298.2 K). The “van't Hoff, Yalkowsky-Roseman, Jouyban-Acree, and Jouyban-Acree-van't Hoff models” had mean percent deviations of 5.13%, 11.96%, 1.14%, and 1.37%, showing excellent correlations. According to the results of apparent thermodynamic analyses, the dissolution of studied drug was “endothermic and entropy-driven” in all {(DMSO) (1) + water (2)} mixtures studied. The main mechanism for raloxifene hydrochloride solvation in {(DMSO) (1) + water (2)} mixtures was uncovered as an enthalpy-driven process. In comparison to raloxifene hydrochloride-water, raloxifene hydrochloride-DMSO produced the most molecular interactions. Finally, these results showed that DMSO has a lot of potential for solubilizing a poorly soluble raloxifene hydrochloride in water.

Original languageEnglish
Pages (from-to)9119-9128
Number of pages10
JournalAlexandria Engineering Journal
Volume61
Issue number11
DOIs
StatePublished - Nov 2022

Keywords

  • Correlation
  • Molecular interactions
  • Raloxifene hydrochloride
  • Solubility
  • Thermodynamics
  • {DMSO (1) + water (2)} mixtures

Fingerprint

Dive into the research topics of 'Solubility and solution thermodynamics of raloxifene hydrochloride in various (DMSO + water) compositions: Solubility and solution thermodynamics of raloxifene hydrochloride'. Together they form a unique fingerprint.

Cite this