TY - JOUR
T1 - SelfLoc
T2 - Robust Self-Supervised Indoor Localization with IEEE 802.11az Wi-Fi for Smart Environments
AU - Rizk, Hamada
AU - Elmogy, Ahmed
N1 - Publisher Copyright:
© 2025 by the authors.
PY - 2025/7
Y1 - 2025/7
N2 - Accurate and scalable indoor localization is a key enabler of intelligent automation in smart environments and industrial systems. In this paper, we present SelfLoc, a self-supervised indoor localization system that combines IEEE 802.11az Round Trip Time (RTT) and Received Signal Strength Indicator (RSSI) data to achieve fine-grained positioning using commodity Wi-Fi infrastructure. Unlike conventional methods that depend heavily on labeled data, SelfLoc adopts a contrastive learning framework to extract spatially discriminative and temporally consistent representations from unlabeled wireless measurements. The system integrates a dual-contrastive strategy: temporal contrasting captures sequential signal dynamics essential for tracking mobile agents, while contextual contrasting promotes spatial separability by ensuring that signal representations from distinct locations remain well-differentiated, even under similar signal conditions or environmental symmetry. To this end, we design signal-specific augmentation techniques for the physical properties of RTT and RSSI, enabling the model to generalize across environments. SelfLoc also adapts effectively to new deployment scenarios with minimal labeled data, making it suitable for dynamic and collaborative industrial applications. We validate the effectiveness of SelfLoc through experiments conducted in two realistic indoor testbeds using commercial Android devices and seven Wi-Fi access points. The results demonstrate that SelfLoc achieves high localization precision, with a median error of only 0.55 m, and surpasses state-of-the-art baselines by at least 63.3% with limited supervision. These findings affirm the potential of SelfLoc to support spatial intelligence and collaborative automation, aligning with the goals of Industry 4.0 and Society 5.0, where seamless human–machine interactions and intelligent infrastructure are key enablers of next-generation smart environments.
AB - Accurate and scalable indoor localization is a key enabler of intelligent automation in smart environments and industrial systems. In this paper, we present SelfLoc, a self-supervised indoor localization system that combines IEEE 802.11az Round Trip Time (RTT) and Received Signal Strength Indicator (RSSI) data to achieve fine-grained positioning using commodity Wi-Fi infrastructure. Unlike conventional methods that depend heavily on labeled data, SelfLoc adopts a contrastive learning framework to extract spatially discriminative and temporally consistent representations from unlabeled wireless measurements. The system integrates a dual-contrastive strategy: temporal contrasting captures sequential signal dynamics essential for tracking mobile agents, while contextual contrasting promotes spatial separability by ensuring that signal representations from distinct locations remain well-differentiated, even under similar signal conditions or environmental symmetry. To this end, we design signal-specific augmentation techniques for the physical properties of RTT and RSSI, enabling the model to generalize across environments. SelfLoc also adapts effectively to new deployment scenarios with minimal labeled data, making it suitable for dynamic and collaborative industrial applications. We validate the effectiveness of SelfLoc through experiments conducted in two realistic indoor testbeds using commercial Android devices and seven Wi-Fi access points. The results demonstrate that SelfLoc achieves high localization precision, with a median error of only 0.55 m, and surpasses state-of-the-art baselines by at least 63.3% with limited supervision. These findings affirm the potential of SelfLoc to support spatial intelligence and collaborative automation, aligning with the goals of Industry 4.0 and Society 5.0, where seamless human–machine interactions and intelligent infrastructure are key enablers of next-generation smart environments.
KW - contrastive learning
KW - Fine Time Measurement (FTM)
KW - IEEE 802.11az
KW - indoor localization
KW - low-cost localization infrastructure
KW - RSSI fusion
KW - self-supervised learning
KW - smart environments
KW - ubiquitous positioning
KW - Wi-Fi RTT
UR - http://www.scopus.com/inward/record.url?scp=105010325652&partnerID=8YFLogxK
U2 - 10.3390/electronics14132675
DO - 10.3390/electronics14132675
M3 - Article
AN - SCOPUS:105010325652
SN - 2079-9292
VL - 14
JO - Electronics (Switzerland)
JF - Electronics (Switzerland)
IS - 13
M1 - 2675
ER -