TY - JOUR
T1 - Reactive Oxygen Species in Plants
T2 - From Source to Sink
AU - Mansoor, Sheikh
AU - Wani, Owais Ali
AU - Lone, Jafar K.
AU - Manhas, Sweeta
AU - Kour, Navneet
AU - Alam, Pravej
AU - Ahmad, Ajaz
AU - Ahmad, Parvaiz
N1 - Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2022/2
Y1 - 2022/2
N2 - Reactive oxygen species (ROS, partial reduction or derivatives of free radicals) are highly reactive, dangerous and can cause oxidative cell death. In addition to their role as toxic by-products of aerobic metabolism, ROS play a role in the control and regulation of biological processes such as growth, the cell cycle, programmed cell death, hormone signaling, biotic and abiotic stress reactions and development. ROS always arise in plants as a by-product of several metabolic processes that are located in different cell compartments, or as a result of the inevitable escape of electrons to oxygen from the electron transport activities of chloroplasts, mitochondria and plasma membranes. These reactive species are formed in chloroplasts, mitochondria, plasma membranes, peroxisomes, apoplasts, the endoplasmic reticulum and cell walls. The action of many non-enzymatic and enzy-matic antioxidants present in tissues is required for efficient scavenging of ROS generated during various environmental stressors. The current review provides an in-depth look at the fate of ROS in plants, a beneficial role in managing stress and other irregularities. The production sites are also explained with their negative effects. In addition, the biochemical properties and sources of ROS generation, capture systems, the influence of ROS on cell biochemistry and the crosstalk of ROS with other signaling molecules/pathways are discussed.
AB - Reactive oxygen species (ROS, partial reduction or derivatives of free radicals) are highly reactive, dangerous and can cause oxidative cell death. In addition to their role as toxic by-products of aerobic metabolism, ROS play a role in the control and regulation of biological processes such as growth, the cell cycle, programmed cell death, hormone signaling, biotic and abiotic stress reactions and development. ROS always arise in plants as a by-product of several metabolic processes that are located in different cell compartments, or as a result of the inevitable escape of electrons to oxygen from the electron transport activities of chloroplasts, mitochondria and plasma membranes. These reactive species are formed in chloroplasts, mitochondria, plasma membranes, peroxisomes, apoplasts, the endoplasmic reticulum and cell walls. The action of many non-enzymatic and enzy-matic antioxidants present in tissues is required for efficient scavenging of ROS generated during various environmental stressors. The current review provides an in-depth look at the fate of ROS in plants, a beneficial role in managing stress and other irregularities. The production sites are also explained with their negative effects. In addition, the biochemical properties and sources of ROS generation, capture systems, the influence of ROS on cell biochemistry and the crosstalk of ROS with other signaling molecules/pathways are discussed.
KW - Cell death
KW - Production
KW - Reactive oxygen species
KW - Signaling
KW - Stress
UR - http://www.scopus.com/inward/record.url?scp=85123344542&partnerID=8YFLogxK
U2 - 10.3390/antiox11020225
DO - 10.3390/antiox11020225
M3 - Review article
AN - SCOPUS:85123344542
SN - 2076-3921
VL - 11
JO - Antioxidants
JF - Antioxidants
IS - 2
M1 - 225
ER -