TY - JOUR
T1 - Quality by design aided self-nano emulsifying drug delivery systems development for the oral delivery of Benidipine
T2 - Improvement of biopharmaceutical performance
AU - Buddhadev, Sheetal S.
AU - C. Garala, Kevinkumar
AU - S, Saisivam
AU - Rahamathulla, Mohamed
AU - Ahmed, Mohammed Muqtader
AU - Farhana, Syeda Ayesha
AU - Pasha, Ismail
N1 - Publisher Copyright:
© 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
PY - 2024
Y1 - 2024
N2 - The primary objective of the research effort is to establish efficient solid self-nanoemulsifying drug delivery systems (S-SNEDDS) for benidipine (BD) through the systematic application of a quality-by-design (QbD)-based paradigm. Utilizing Labrafil M 2125 CS, Kolliphor EL, and Transcutol P, the BD-S-SNEDDS were created. The central composite design was adopted to optimize numerous components. Zeta potential, drug concentration, resistance to dilution, pH, refractive index, viscosity, thermodynamic stability, and cloud point were further investigated in the most efficient formulation, BD14, which had a globule size of 156.20 ± 2.40 nm, PDI of 0.25, zeta potential of −17.36 ± 0.18 mV, self-emulsification time of 65.21 ± 1.95 s, % transmittance of 99.80 ± 0.70%, and drug release of 92.65 ± 1.70% at 15 min. S-SNEDDS were formulated using the adsorption process and investigated via Fourier transform infrared spectroscopy, Differential scanning calorimeter, Scanning electron microscopy, and powder X-ray diffraction. Optimized S-SNEDDS batch BD14 dramatically decreased blood pressure in rats in contrast to the pure drug and the commercial product, according to a pharmacodynamics investigation. Accelerated stability tests validated the product’s stability. Therefore, the development of oral S-SNEDDS of BD may be advantageous for raising BD's water solubility and expanding their releasing capabilities, thereby boosting oral absorption.
AB - The primary objective of the research effort is to establish efficient solid self-nanoemulsifying drug delivery systems (S-SNEDDS) for benidipine (BD) through the systematic application of a quality-by-design (QbD)-based paradigm. Utilizing Labrafil M 2125 CS, Kolliphor EL, and Transcutol P, the BD-S-SNEDDS were created. The central composite design was adopted to optimize numerous components. Zeta potential, drug concentration, resistance to dilution, pH, refractive index, viscosity, thermodynamic stability, and cloud point were further investigated in the most efficient formulation, BD14, which had a globule size of 156.20 ± 2.40 nm, PDI of 0.25, zeta potential of −17.36 ± 0.18 mV, self-emulsification time of 65.21 ± 1.95 s, % transmittance of 99.80 ± 0.70%, and drug release of 92.65 ± 1.70% at 15 min. S-SNEDDS were formulated using the adsorption process and investigated via Fourier transform infrared spectroscopy, Differential scanning calorimeter, Scanning electron microscopy, and powder X-ray diffraction. Optimized S-SNEDDS batch BD14 dramatically decreased blood pressure in rats in contrast to the pure drug and the commercial product, according to a pharmacodynamics investigation. Accelerated stability tests validated the product’s stability. Therefore, the development of oral S-SNEDDS of BD may be advantageous for raising BD's water solubility and expanding their releasing capabilities, thereby boosting oral absorption.
KW - Benidipine
KW - CCD
KW - central composite design
KW - quality by design: QBD
KW - S-SNEDDS
KW - solid self-nanoemulsifying drug delivery systems
KW - ternary phase diagram
UR - http://www.scopus.com/inward/record.url?scp=85179646588&partnerID=8YFLogxK
U2 - 10.1080/10717544.2023.2288801
DO - 10.1080/10717544.2023.2288801
M3 - Article
C2 - 38073402
AN - SCOPUS:85179646588
SN - 1071-7544
VL - 31
JO - Drug Delivery
JF - Drug Delivery
IS - 1
M1 - 2288801
ER -