TY - JOUR
T1 - Preparation, optimization, and characterization of chrysin-loaded TPGS-b-PCL micelles and assessment of their cytotoxic potential in human liver cancer (Hep G2) cell lines
AU - Alshetaili, Abdullah S.
AU - Ali, Raisuddin
AU - Qamar, Wajhul
AU - Almohizea, Salman
AU - Anwer, Md Khalid
N1 - Publisher Copyright:
© 2023
PY - 2023/8/15
Y1 - 2023/8/15
N2 - In total, nine TPGS-b-PCL copolymers were synthesized employing distinct TPGS analogues (TPGS 2000, 3500, and 5000). In these copolymers, the length of the PCL chain varied according to the TPGS to PCL molecular weight ratio (1:1, 1:2, and 1:3). The formulation optimization was done by optimizing the drug to polymer ratio, encapsulation efficiency, drug loading, micelle diameter, and polydispersity index (PDI). TPGS3500-b-PCL7000 copolymer (TPGS to PCL ratio 1:2) with drug to polymer ratio 1:30 showed the best percentage encapsulation (63.50 ± 0.45 %) and drug loading (2.05 ± 0.07). The optimal micelle (CHR-M) diameter and PDI were determined to be 94.57 ± 13.40 nm and 0.16 ± 0.02, respectively. CHR-M showed slow release when compared with alcoholic solution of chrysin. Approximately 70.70 ± 6.4 % drug was released in 72 h. The CHR-M demonstrated considerably greater absorption in Hep G2 cells, which confirmed the reliability of the micellar carrier. The MTT assay results showed that the IC50 values for CHR-M were much lower after 24 and 48 h when compared to free chrysin. Therefore, CHR-M may be a viable carrier for active chrysin targeting with improved anticancer potential. Also, it could be a better alternative for the currently available treatment of hepatocellular carcinoma.
AB - In total, nine TPGS-b-PCL copolymers were synthesized employing distinct TPGS analogues (TPGS 2000, 3500, and 5000). In these copolymers, the length of the PCL chain varied according to the TPGS to PCL molecular weight ratio (1:1, 1:2, and 1:3). The formulation optimization was done by optimizing the drug to polymer ratio, encapsulation efficiency, drug loading, micelle diameter, and polydispersity index (PDI). TPGS3500-b-PCL7000 copolymer (TPGS to PCL ratio 1:2) with drug to polymer ratio 1:30 showed the best percentage encapsulation (63.50 ± 0.45 %) and drug loading (2.05 ± 0.07). The optimal micelle (CHR-M) diameter and PDI were determined to be 94.57 ± 13.40 nm and 0.16 ± 0.02, respectively. CHR-M showed slow release when compared with alcoholic solution of chrysin. Approximately 70.70 ± 6.4 % drug was released in 72 h. The CHR-M demonstrated considerably greater absorption in Hep G2 cells, which confirmed the reliability of the micellar carrier. The MTT assay results showed that the IC50 values for CHR-M were much lower after 24 and 48 h when compared to free chrysin. Therefore, CHR-M may be a viable carrier for active chrysin targeting with improved anticancer potential. Also, it could be a better alternative for the currently available treatment of hepatocellular carcinoma.
KW - Chrysin
KW - Hepatocellular carcinoma
KW - Micelles
UR - http://www.scopus.com/inward/record.url?scp=85164274268&partnerID=8YFLogxK
U2 - 10.1016/j.ijbiomac.2023.125679
DO - 10.1016/j.ijbiomac.2023.125679
M3 - Article
C2 - 37406911
AN - SCOPUS:85164274268
SN - 0141-8130
VL - 246
JO - International Journal of Biological Macromolecules
JF - International Journal of Biological Macromolecules
M1 - 125679
ER -