TY - JOUR
T1 - Preparation and Evaluation of Chitosan Coated PLGA Nanoparticles Encapsulating Ivosidenib with Enhanced Cytotoxicity Against Human Liver Cancer Cells
AU - Alsulays, Bader B.
AU - Aodah, Alhussain H.
AU - Ahmed, Mohammad Muqtader
AU - Anwer, Md Khalid
N1 - Publisher Copyright:
© 2024 Alsulays et al.
PY - 2024
Y1 - 2024
N2 - Purpose: Ivosidenib (IVO), an isocitrate dehydrogenase-1 (IDH1) used for treatment of acute myeloid leukemia (AML) and cholangiocarcinoma. However, poor solubility, low bioavailability, high dose and side effects limit clinical application of IVO. Methods: Ivosidenib-loaded PLGA nanoparticles (IVO-PLGA-NPs) and Ivosidenib-loaded chitosan coated PLGA nanoparticles (IVO-CS-PLGA-NPs) were prepared using emulsification and solvent evaporation method for the treatment of liver cancer. Results: The developed IVO-PLGA-NPs were evaluated for their particle size (171.7±4.9 nm), PDI (0.333), ZP (−23.0±5.8 mV), EE (96.3±4.3%), and DL (9.66±1.1%); similarly, the IVO-CS-PLGA-NPs were evaluated for their particle size (177.3±5.2 nm), PDI (0.311), ZP +25.9±5.7 mV, EE (90.8±5.7%), and DL (9.42±0.7%). The chitosan coating of IVO-PLGA-NPs was evidenced by an increase in mean particle size and positive ZP value. Because of the chitosan coating, the IVO-CS-PLGA-NPs showed a more stable and prolonged release of IVO than IVO-PLGA-NPs. In comparison to pure-IVO, the IVO-PLGA-NPs and IVO-CS-PLGA-NPs were found to be more effective against HepG2 cells, with IC50 values for the MTT assay being approximately half of those of pure-IVO. In HepG2 cells, the expressions of caspase-3, caspase-9, and p53 were significantly (p < 0.05) elevated. Conclusion: Overall, these findings suggest that chitosan coating of IVO-PLGA-NPs improves the delivery and efficacy of ivosidenib in liver cancer treatment.
AB - Purpose: Ivosidenib (IVO), an isocitrate dehydrogenase-1 (IDH1) used for treatment of acute myeloid leukemia (AML) and cholangiocarcinoma. However, poor solubility, low bioavailability, high dose and side effects limit clinical application of IVO. Methods: Ivosidenib-loaded PLGA nanoparticles (IVO-PLGA-NPs) and Ivosidenib-loaded chitosan coated PLGA nanoparticles (IVO-CS-PLGA-NPs) were prepared using emulsification and solvent evaporation method for the treatment of liver cancer. Results: The developed IVO-PLGA-NPs were evaluated for their particle size (171.7±4.9 nm), PDI (0.333), ZP (−23.0±5.8 mV), EE (96.3±4.3%), and DL (9.66±1.1%); similarly, the IVO-CS-PLGA-NPs were evaluated for their particle size (177.3±5.2 nm), PDI (0.311), ZP +25.9±5.7 mV, EE (90.8±5.7%), and DL (9.42±0.7%). The chitosan coating of IVO-PLGA-NPs was evidenced by an increase in mean particle size and positive ZP value. Because of the chitosan coating, the IVO-CS-PLGA-NPs showed a more stable and prolonged release of IVO than IVO-PLGA-NPs. In comparison to pure-IVO, the IVO-PLGA-NPs and IVO-CS-PLGA-NPs were found to be more effective against HepG2 cells, with IC50 values for the MTT assay being approximately half of those of pure-IVO. In HepG2 cells, the expressions of caspase-3, caspase-9, and p53 were significantly (p < 0.05) elevated. Conclusion: Overall, these findings suggest that chitosan coating of IVO-PLGA-NPs improves the delivery and efficacy of ivosidenib in liver cancer treatment.
KW - bioavailability
KW - caspase
KW - characterization
KW - polymers
KW - sustained release
UR - http://www.scopus.com/inward/record.url?scp=85190901251&partnerID=8YFLogxK
U2 - 10.2147/IJN.S452989
DO - 10.2147/IJN.S452989
M3 - Article
C2 - 38617799
AN - SCOPUS:85190901251
SN - 1176-9114
VL - 19
SP - 3461
EP - 3473
JO - International Journal of Nanomedicine
JF - International Journal of Nanomedicine
ER -