Abstract
Diabetes affects a large population of the globe and is considered as a leading cause of death. Many synthetic and natural inhibitors have been developed for diabetes treatment. Herein, we report the potential antidiabetic activity of two new heterocyclic systems, namely 3.6-dimethyl-5-oxo-pyrido[3,4f][1,2,4]triazepino[2,3-a]benzimidazole (I) and 10-amino-2-methyl-4-oxo pyrimido[1,2-a]benzimidazole (II) against three related enzymes: α-amylase, α-glucosidase and β-galactosidase. Compounds I and II were synthesized by the action of DMF-DMA and dimethyl sulfate in the presence of water on 2-methyl-3H-benzimidazolo[1,2b][1,2,4]triazepin-4(5H)-one, and are characterized by single X-ray diffraction. The binding interaction modes in the active sites of I and II and targeted enzymes (stable complexes ligand-receptor) are emphasized using the molecular docking approach by applying the Lamarckian genetic algorithm method. Furthermore, plausible mechanisms have been proposed explaining their synthesis. Hirshfeld surface analysis reveals the nature of molecular interactions and fingerprint plots provide information about the percentage contribution from each individual molecular contact to the structure surface.
Original language | English |
---|---|
Article number | 179 |
Journal | Journal of Molecular Modeling |
Volume | 24 |
Issue number | 7 |
DOIs | |
State | Published - 1 Jul 2018 |
Keywords
- Antidiabetic activity
- Benzimidazole
- Hirshfeld surface
- Hydrogen bond
- Molecular docking
- X-ray