TY - JOUR
T1 - Performance investigation of UOWC system based on OAM beams for various Jerlov water types
AU - Abd El-Mottaleb, Somia A.
AU - Singh, Mehtab
AU - Atieh, Ahmad
AU - Ahmed, Hassan Yousif
AU - Zeghid, Medien
AU - Nisar, Kottakkaran Sooppy
AU - Bouallegue, Belgacem
N1 - Publisher Copyright:
© 2024
PY - 2024/12
Y1 - 2024/12
N2 - This paper introduces a novel high-speed underwater optical wireless communication (UOWC) system employing three distinct orbital angular momentum (OAM) beams. A single green laser source operating at 532 nm generates these beams: LG0,0,LG0,20,andLG0,50, each transmitting data at 10 Gbps. The paper provides a comprehensive analysis of absorption and scattering coefficients for five Jerlov water types: I (JI), IA (JIA), IB (JIB), II (JII), and III (JIII). Simulation results demonstrate the system ability to transmit multiple data streams simultaneously using distinct OAM modes, achieving an overall capacity of 30 Gbps. The longest underwater (UW) transmission distance of 22 m is achieved in JI water as it exhibits the lowest attenuation. This range decreases by 9.09 %, 31.82 %, 59.09 %, and 80.91 % in JIA, JIB, JII, and JIII, respectively, due to increased attenuation in these water types. These results are obtained with a log (BER) below −5 and a Q-factor above 4, indicating successful data reception. The findings highlight the potential of OAM multiplexing for enhancing data capacity in challenging underwater environments.
AB - This paper introduces a novel high-speed underwater optical wireless communication (UOWC) system employing three distinct orbital angular momentum (OAM) beams. A single green laser source operating at 532 nm generates these beams: LG0,0,LG0,20,andLG0,50, each transmitting data at 10 Gbps. The paper provides a comprehensive analysis of absorption and scattering coefficients for five Jerlov water types: I (JI), IA (JIA), IB (JIB), II (JII), and III (JIII). Simulation results demonstrate the system ability to transmit multiple data streams simultaneously using distinct OAM modes, achieving an overall capacity of 30 Gbps. The longest underwater (UW) transmission distance of 22 m is achieved in JI water as it exhibits the lowest attenuation. This range decreases by 9.09 %, 31.82 %, 59.09 %, and 80.91 % in JIA, JIB, JII, and JIII, respectively, due to increased attenuation in these water types. These results are obtained with a log (BER) below −5 and a Q-factor above 4, indicating successful data reception. The findings highlight the potential of OAM multiplexing for enhancing data capacity in challenging underwater environments.
KW - Absorption and scattering coefficients
KW - Bit error rate
KW - Jerlov water types
KW - Orbital angular momentum beams
KW - Underwater optical wireless communication system
UR - http://www.scopus.com/inward/record.url?scp=85204357937&partnerID=8YFLogxK
U2 - 10.1016/j.rineng.2024.102941
DO - 10.1016/j.rineng.2024.102941
M3 - Article
AN - SCOPUS:85204357937
SN - 2590-1230
VL - 24
JO - Results in Engineering
JF - Results in Engineering
M1 - 102941
ER -