TY - JOUR
T1 - Performance evaluation of triple-frequency gps/galileo techniques for precise static and kinematic applications
AU - Rabbou, Mahmoud Abd
AU - Abdelazeem, Mohamed
AU - Morsy, Salem
N1 - Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/5/2
Y1 - 2021/5/2
N2 - The objective of this research was to develop new precise point positioning (PPP) processing models using triple-frequency GPS/Galileo observations. Different triple-frequency PPP models were developed including undifferenced, between-satellite single-difference (BSSD) and semi-decoupled PPP models. Additionally, a dual-frequency ionosphere-free undifferenced PPP model was developed. The performance of our developed PPP models was evaluated for both static and kinematic applications. To validate the proposed PPP models for static applications, triple-frequency GPS/Galileo observations spanning three successive days from eight globally distributed reference stations were acquired. Then, the observations were processed using the four static PPP solutions. It is found that the 3D positioning accuracy of the triple-frequency semi-decoupled, BSSD and undiffer-enced PPP models is enhanced after 10 min by about 50, 41 and 29%, respectively, compared with the dual-frequency undifferenced PPP model. After 20 min of processing, improvements in the 3D positioning accuracy by 40, 31 and 21% are obtained for the triple-frequency semi-decoupled, BSSD and undifferenced PPP models, respectively, with respect to the dual-frequency PPP model. The 3D positioning accuracy is also improved after 60 min, compared with the dual-frequency solution, by 40, 40 and 35% for the triple-frequency semi-decoupled, BSSD and undifferenced PPP solutions, respectively. For kinematic application validation, a vehicle trajectory was carried out. The collected triple-frequency GPS/Galileo observations were processed using the four kinematic PPP solutions. It is shown that the triple-frequency semi-decupled, BSSD and undifferenced PPP solutions enhance the 3D positioning accuracy by 31, 23 and 10%, respectively, in comparison with the dual-frequency undifferenced PPP solutions.
AB - The objective of this research was to develop new precise point positioning (PPP) processing models using triple-frequency GPS/Galileo observations. Different triple-frequency PPP models were developed including undifferenced, between-satellite single-difference (BSSD) and semi-decoupled PPP models. Additionally, a dual-frequency ionosphere-free undifferenced PPP model was developed. The performance of our developed PPP models was evaluated for both static and kinematic applications. To validate the proposed PPP models for static applications, triple-frequency GPS/Galileo observations spanning three successive days from eight globally distributed reference stations were acquired. Then, the observations were processed using the four static PPP solutions. It is found that the 3D positioning accuracy of the triple-frequency semi-decoupled, BSSD and undiffer-enced PPP models is enhanced after 10 min by about 50, 41 and 29%, respectively, compared with the dual-frequency undifferenced PPP model. After 20 min of processing, improvements in the 3D positioning accuracy by 40, 31 and 21% are obtained for the triple-frequency semi-decoupled, BSSD and undifferenced PPP models, respectively, with respect to the dual-frequency PPP model. The 3D positioning accuracy is also improved after 60 min, compared with the dual-frequency solution, by 40, 40 and 35% for the triple-frequency semi-decoupled, BSSD and undifferenced PPP solutions, respectively. For kinematic application validation, a vehicle trajectory was carried out. The collected triple-frequency GPS/Galileo observations were processed using the four kinematic PPP solutions. It is shown that the triple-frequency semi-decupled, BSSD and undifferenced PPP solutions enhance the 3D positioning accuracy by 31, 23 and 10%, respectively, in comparison with the dual-frequency undifferenced PPP solutions.
KW - Between-satellite single-difference (BSSD)
KW - GPS/Galileo
KW - Precise point positioning (PPP)
KW - Semi-decoupled
KW - Triple-frequency
UR - http://www.scopus.com/inward/record.url?scp=85105757898&partnerID=8YFLogxK
U2 - 10.3390/s21103396
DO - 10.3390/s21103396
M3 - Article
C2 - 34068123
AN - SCOPUS:85105757898
SN - 1424-8220
VL - 21
JO - Sensors
JF - Sensors
IS - 10
M1 - 3396
ER -