TY - JOUR
T1 - Parallel Cooperative Coevolutionary Grey Wolf Optimizer for Path Planning Problem of Unmanned Aerial Vehicles
AU - Jarray, Raja
AU - Al-Dhaifallah, Mujahed
AU - Rezk, Hegazy
AU - Bouallègue, Soufiene
N1 - Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2022/3/1
Y1 - 2022/3/1
N2 - The path planning of Unmanned Aerial Vehicles (UAVs) is a complex and hard task that can be formulated as a Large-Scale Global Optimization (LSGO) problem. A higher partition of the flight environment leads to an increase in route’s accuracy but at the expense of greater planning complexity. In this paper, a new Parallel Cooperative Coevolutionary Grey Wolf Optimizer (PCCGWO) is proposed to solve such a planning problem. The proposed PCCGWO metaheuristic applies cooperative coevolutionary concepts to ensure an efficient partition of the original search space into multiple sub-spaces with reduced dimensions. The decomposition of the decision variables vector into several sub-components is achieved and multi-swarms are created from the initial population. Each sub-swarm is then assigned to optimize a part of the LSGO problem. To form the complete solution, the representatives from each sub-swarm are combined. To reduce the computation time, an efficient parallel master-slave model is introduced in the proposed parameters-free PCCGWO. The master will be responsible for decomposing the original problem and constructing the context vector which contains the complete solution. Each slave is designed to evolve a sub-component and will send the best individual as its representative to the master after each evolutionary cycle. Demonstrative results show the effectiveness and superiority of the proposed PCCGWO-based planning technique in terms of several metrics of performance and nonparametric statistical analyses. These results show that the increase in the number of slaves leads to a more efficient result as well as a further improved computational time.
AB - The path planning of Unmanned Aerial Vehicles (UAVs) is a complex and hard task that can be formulated as a Large-Scale Global Optimization (LSGO) problem. A higher partition of the flight environment leads to an increase in route’s accuracy but at the expense of greater planning complexity. In this paper, a new Parallel Cooperative Coevolutionary Grey Wolf Optimizer (PCCGWO) is proposed to solve such a planning problem. The proposed PCCGWO metaheuristic applies cooperative coevolutionary concepts to ensure an efficient partition of the original search space into multiple sub-spaces with reduced dimensions. The decomposition of the decision variables vector into several sub-components is achieved and multi-swarms are created from the initial population. Each sub-swarm is then assigned to optimize a part of the LSGO problem. To form the complete solution, the representatives from each sub-swarm are combined. To reduce the computation time, an efficient parallel master-slave model is introduced in the proposed parameters-free PCCGWO. The master will be responsible for decomposing the original problem and constructing the context vector which contains the complete solution. Each slave is designed to evolve a sub-component and will send the best individual as its representative to the master after each evolutionary cycle. Demonstrative results show the effectiveness and superiority of the proposed PCCGWO-based planning technique in terms of several metrics of performance and nonparametric statistical analyses. These results show that the increase in the number of slaves leads to a more efficient result as well as a further improved computational time.
KW - Cooperative coevolutionary algorithms
KW - Friedman statistical analyses
KW - Grey wolf opti-mizer
KW - Large-scale global optimization
KW - Parallel master-slave model
KW - Paths planning
KW - Unmanned aerial vehicles
UR - http://www.scopus.com/inward/record.url?scp=85125054228&partnerID=8YFLogxK
U2 - 10.3390/s22051826
DO - 10.3390/s22051826
M3 - Article
C2 - 35270978
AN - SCOPUS:85125054228
SN - 1424-8220
VL - 22
JO - Sensors
JF - Sensors
IS - 5
M1 - 1826
ER -