TY - JOUR
T1 - Pandemic disease detection through wireless communication using infrared image based on deep learning
AU - Alhameed, Mohammed
AU - Jeribi, Fathe
AU - Elnaim, Bushra Mohamed Elamin
AU - Hossain, Mohammad Alamgir
AU - Abdelhag, Mohammed Eltahir
N1 - Publisher Copyright:
© 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
PY - 2023
Y1 - 2023
N2 - Rapid diagnosis to test diseases, such as COVID-19, is a significant issue. It is a routine virus test in a reverse transcriptase-polymerase chain reaction. However, a test like this takes longer to complete because it follows the serial testing method, and there is a high chance of a false-negative ratio (FNR). Moreover, there arises a deficiency of R.T.-PCR test kits. Therefore, alternative procedures for a quick and accurate diagnosis of patients are urgently needed to deal with these pandemics. The infrared image is self-sufficient for detecting these diseases by measuring the temperature at the initial stage. C.T. scans and other pathological tests are valuable aspects of evaluating a patient with a suspected pandemic infection. However, a patient's radiological findings may not be identified initially. Therefore, we have included an Artificial Intelligence (A.I.) algorithm-based Machine Intelligence (MI) system in this proposal to combine C.T. scan findings with all other tests, symptoms, and history to quickly diagnose a patient with a positive symptom of current and future pandemic diseases. Initially, the system will collect information by an infrared camera of the patient's facial regions to measure temperature, keep it as a record, and complete further actions. We divided the face into eight classes and twelve regions for temperature measurement. A database named patient-info-mask is maintained. While collecting sample data, we incorporate a wireless network using a cloudlets server to make processing more accessible with minimal infrastructure. The system will use deep learning approaches. We propose convolution neural networks (CNN) to cross-verify the collected data. For better results, we incorporated tenfold cross-verification into the synthesis method. As a result, our new way of estimating became more accurate and efficient. We achieved 3.29% greater accuracy by incorporating the "decision tree level synthesis method" and "ten-folded-validation method". It proves the robustness of our proposed method.
AB - Rapid diagnosis to test diseases, such as COVID-19, is a significant issue. It is a routine virus test in a reverse transcriptase-polymerase chain reaction. However, a test like this takes longer to complete because it follows the serial testing method, and there is a high chance of a false-negative ratio (FNR). Moreover, there arises a deficiency of R.T.-PCR test kits. Therefore, alternative procedures for a quick and accurate diagnosis of patients are urgently needed to deal with these pandemics. The infrared image is self-sufficient for detecting these diseases by measuring the temperature at the initial stage. C.T. scans and other pathological tests are valuable aspects of evaluating a patient with a suspected pandemic infection. However, a patient's radiological findings may not be identified initially. Therefore, we have included an Artificial Intelligence (A.I.) algorithm-based Machine Intelligence (MI) system in this proposal to combine C.T. scan findings with all other tests, symptoms, and history to quickly diagnose a patient with a positive symptom of current and future pandemic diseases. Initially, the system will collect information by an infrared camera of the patient's facial regions to measure temperature, keep it as a record, and complete further actions. We divided the face into eight classes and twelve regions for temperature measurement. A database named patient-info-mask is maintained. While collecting sample data, we incorporate a wireless network using a cloudlets server to make processing more accessible with minimal infrastructure. The system will use deep learning approaches. We propose convolution neural networks (CNN) to cross-verify the collected data. For better results, we incorporated tenfold cross-verification into the synthesis method. As a result, our new way of estimating became more accurate and efficient. We achieved 3.29% greater accuracy by incorporating the "decision tree level synthesis method" and "ten-folded-validation method". It proves the robustness of our proposed method.
KW - convolution neural networks
KW - deep learning
KW - infrared image
KW - machine intelligence
KW - ten-folded-validation method
UR - http://www.scopus.com/inward/record.url?scp=85141734814&partnerID=8YFLogxK
U2 - 10.3934/mbe.2023050
DO - 10.3934/mbe.2023050
M3 - Article
C2 - 36650803
AN - SCOPUS:85141734814
SN - 1547-1063
VL - 20
SP - 1083
EP - 1105
JO - Mathematical Biosciences and Engineering
JF - Mathematical Biosciences and Engineering
IS - 1
ER -