ON DYNAMIC BEHAVIOR of A DISCRETE FRACTIONAL-ORDER NONLINEAR PREY-PREDATOR MODEL

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

This work is devoted to explore the dynamics of the proposed discrete fractional-order prey-predator model. The model is the generalization of the conventional discrete prey-predator model to its corresponding fractional-order counterpart. The fixed points of the proposed model are first found and their stability analyses are carried out. Then, the nonlinear dynamical behaviors of the model, including quasi-periodicity and chaotic behaviors, are investigated. The influences of fractional order and different parameters in the model are examined using several techniques such as Lyapunov exponents, bifurcation diagrams, phase portraits and C0 complexity. The feedback control method is suggested to suppress the chaotic dynamics of the model and stabilize any selected unstable fixed point of the system.

Original languageEnglish
Article number2140037
JournalFractals
Volume29
Issue number8
DOIs
StatePublished - 1 Dec 2021

Keywords

  • Caputo-Like Delta Difference
  • Chaos Suppression
  • Feedback Control
  • Fractional Prey-Predator Map

Fingerprint

Dive into the research topics of 'ON DYNAMIC BEHAVIOR of A DISCRETE FRACTIONAL-ORDER NONLINEAR PREY-PREDATOR MODEL'. Together they form a unique fingerprint.

Cite this