TY - JOUR
T1 - Numerical Study of the Flow and Thermomagnetic Convection Heat Transfer of a Power Law Non-Newtonian Ferrofluid within a Circular Cavity with a Permanent Magnet
AU - Ben Khedher, Nidhal
AU - Shahabadi, Mohammad
AU - Alghawli, Abed Saif
AU - Hulme, Christopher Neil
AU - Mehryan, S. A.M.
N1 - Publisher Copyright:
© 2022 by the authors.
PY - 2022/8
Y1 - 2022/8
N2 - The aim of this study is to analyze the thermo-magnetic-gravitational convection of a non-Newtonian power law ferrofluid within a circular cavity. The ferrofluid is exposed to the magnetic field of a permanent magnet. The finite element method is employed to solve the non-dimensional controlling equations. A grid sensitivity analysis and the validation of the used method are conducted. The effect of alterable parameters, including the power law index, 0.7 ≤ n ≤ 1.3, gravitational Rayleigh number, 104 ≤ RaT ≤ 106, magnetic Rayleigh number, 105 ≤ RaM ≤ 108, the location of the hot and cold surfaces, 0 ≤ λ ≤ π/2, and the length of the magnet normalized with respect to the diameter of the cavity, 0.1 ≤ L ≤ 0.65, on the flow and heat transfer characteristics are explored. The results show that the heat transfer rate increases at the end of both arcs compared to the central region because of buoyancy effects, and it is greater close to the hot arc. The location of the arcs does not affect the heat transfer rate considerably. An increase in the magnetic Rayleigh number contributes to stronger circulation of the flow inside and higher heat transfer. When the Kelvin force is the only one imposed on the flow, it enhances the heat transfer for magnets of length 0.2 ≤ L ≤ 0.3.
AB - The aim of this study is to analyze the thermo-magnetic-gravitational convection of a non-Newtonian power law ferrofluid within a circular cavity. The ferrofluid is exposed to the magnetic field of a permanent magnet. The finite element method is employed to solve the non-dimensional controlling equations. A grid sensitivity analysis and the validation of the used method are conducted. The effect of alterable parameters, including the power law index, 0.7 ≤ n ≤ 1.3, gravitational Rayleigh number, 104 ≤ RaT ≤ 106, magnetic Rayleigh number, 105 ≤ RaM ≤ 108, the location of the hot and cold surfaces, 0 ≤ λ ≤ π/2, and the length of the magnet normalized with respect to the diameter of the cavity, 0.1 ≤ L ≤ 0.65, on the flow and heat transfer characteristics are explored. The results show that the heat transfer rate increases at the end of both arcs compared to the central region because of buoyancy effects, and it is greater close to the hot arc. The location of the arcs does not affect the heat transfer rate considerably. An increase in the magnetic Rayleigh number contributes to stronger circulation of the flow inside and higher heat transfer. When the Kelvin force is the only one imposed on the flow, it enhances the heat transfer for magnets of length 0.2 ≤ L ≤ 0.3.
KW - magnetization
KW - non-Newtonian ferrofluid
KW - permanent magnet
KW - thermomagnetic convection
UR - http://www.scopus.com/inward/record.url?scp=85136814702&partnerID=8YFLogxK
U2 - 10.3390/math10152612
DO - 10.3390/math10152612
M3 - Article
AN - SCOPUS:85136814702
SN - 2227-7390
VL - 10
JO - Mathematics
JF - Mathematics
IS - 15
M1 - 2612
ER -