Abstract
In this paper, an electrically-small microwave dipole sensor is used with machine learning algorithms to build a noninvasive continuous glucose monitoring (CGM) system. As a proof of concept, the sensor is used on aqueous (water-glucose) solutions with different glucose concentrations to check the sensitivity of the sensor. Knowledge-driven and data-driven approaches are used to extract features from the sensor’s signals reflected from the aqueous glucose solution. Machine learning is used to build the regression model in order to predict the actual glucose levels. Using more than 19 regression models, the results show a good accuracy with Root Mean Square Error of 1.6 and 1.7 by Matern 5/2 Gaussian Process Regression (GPR) algorithm using the reflection coefficient’s magnitude and phase.
Original language | English |
---|---|
Pages (from-to) | 127-134 |
Number of pages | 8 |
Journal | Progress in Electromagnetics Research Letters |
Volume | 102 |
DOIs | |
State | Published - 2022 |
Externally published | Yes |