TY - JOUR
T1 - Nitrogen dependence of rhamnolipid mediated degradation of petroleum crude oil by indigenous Pseudomonas sp. WD23 in seawater
AU - Goveas, Louella Concepta
AU - Selvaraj, Raja
AU - Vinayagam, Ramesh
AU - Alsaiari, Ahad Amer
AU - Alharthi, Nahed S.
AU - Sajankila, Shyama Prasad
N1 - Publisher Copyright:
© 2022 Elsevier Ltd
PY - 2022/10
Y1 - 2022/10
N2 - Effect of oil spills on living forms demands for safe, ecofriendly and cost-effective methods to repair the damage. Pseudomonads have exceptional tolerance to xenobiotics and can grow at varied environmental conditions. This study aims at biosurfactant mediated degradation of petroleum crude oil by an indigenous Pseudomonas sp. WD23 in sea water. Pseudomonas sp. WD23 degraded 34% of petroleum crude oil (1.0% v/v) on supplementation of yeast extract (0.05 g/L) with glucose (1.0 g/L) in seawater. The strain produced a biosurfactant which was confirmed as a rhamnolipid (lipid: rhamnose 1:3.35) by FT-IR, LCMS and quantitative analysis. Produced rhamnolipid had low CMC (20.0 mg/L), emulsified petroleum oils (75–80%) and had high tolreance to varied conditions of pH, temperature and ionic strength. OFAT studies were performed to analyse the effect of petroleum crude oil, glucose, inoculum, yeast extract, pH, agitation speed and incubation time on degradation by Pseudomonas sp. WD23. Petroleum crude oil and glucose had significant effect on biodegradation, rhamnolipid production and growth, further optimized by central composite design. At optimum conditions of 3.414% v/v PCO and 6.53 g/L glucose, maximum degradation of 81.8 ± 0.67% was observed at pH 7.5, 100 RPM, 15.0% v/v inoculum in 28 days, with a 3-fold increase in biodegradation. GCMS analysis revealed degradation (86–100%) of all low and high molecular weight hydrocarbons present in petroleum crude oil. Hence, the strain Pseudomonas sp. WD23 can be effectively developed for management of oil spills in seas and oceans due to its excellent degradation abilities.
AB - Effect of oil spills on living forms demands for safe, ecofriendly and cost-effective methods to repair the damage. Pseudomonads have exceptional tolerance to xenobiotics and can grow at varied environmental conditions. This study aims at biosurfactant mediated degradation of petroleum crude oil by an indigenous Pseudomonas sp. WD23 in sea water. Pseudomonas sp. WD23 degraded 34% of petroleum crude oil (1.0% v/v) on supplementation of yeast extract (0.05 g/L) with glucose (1.0 g/L) in seawater. The strain produced a biosurfactant which was confirmed as a rhamnolipid (lipid: rhamnose 1:3.35) by FT-IR, LCMS and quantitative analysis. Produced rhamnolipid had low CMC (20.0 mg/L), emulsified petroleum oils (75–80%) and had high tolreance to varied conditions of pH, temperature and ionic strength. OFAT studies were performed to analyse the effect of petroleum crude oil, glucose, inoculum, yeast extract, pH, agitation speed and incubation time on degradation by Pseudomonas sp. WD23. Petroleum crude oil and glucose had significant effect on biodegradation, rhamnolipid production and growth, further optimized by central composite design. At optimum conditions of 3.414% v/v PCO and 6.53 g/L glucose, maximum degradation of 81.8 ± 0.67% was observed at pH 7.5, 100 RPM, 15.0% v/v inoculum in 28 days, with a 3-fold increase in biodegradation. GCMS analysis revealed degradation (86–100%) of all low and high molecular weight hydrocarbons present in petroleum crude oil. Hence, the strain Pseudomonas sp. WD23 can be effectively developed for management of oil spills in seas and oceans due to its excellent degradation abilities.
KW - Biodegradation
KW - Oil spills
KW - Petroleum crude oil
KW - Pseudomonas sp. WD23
KW - Rhamnolipid
KW - Seawater
UR - https://www.scopus.com/pages/publications/85132229416
U2 - 10.1016/j.chemosphere.2022.135235
DO - 10.1016/j.chemosphere.2022.135235
M3 - Article
C2 - 35675868
AN - SCOPUS:85132229416
SN - 0045-6535
VL - 304
JO - Chemosphere
JF - Chemosphere
M1 - 135235
ER -