TY - JOUR
T1 - Nanovaccines against Cervical Cancer
T2 - Reliable Strategies to Circumvent Limitations of Traditional Therapeutic Vaccines
AU - Oghenemaro, Enwa Felix
AU - Rab, Safia Obaidur
AU - Saleh, Ebraheem Abdu Musad
AU - Kassem, Asmaa F.
AU - Rizaev, Jasur
AU - Nathiya, Deepak
AU - Kaur, Parjinder
AU - Kumar, M. Ravi
AU - Kadhim, Karam
AU - Hashim, Ahmed M.
N1 - Publisher Copyright:
© 2025 The Author (s).
PY - 2025/4
Y1 - 2025/4
N2 - Cervical cancer ranks fourth in terms of diagnosis and cancer-related deaths in women worldwide. Despite the approval of prophylactic vaccines against cervical cancers, these vaccines are not able to eradicate the existing ones. Therefore, various platforms have been developed to design therapeutic vaccines against cervical cancers, including DNA/RNA-based, protein/ peptide-based, vector-based, and cell-based platforms. Despite the advantages of each platform, therapeutic vaccines have displayed limited clinical benefit in patients with cervical cancer, which is partially associated with inefficient delivery of vaccine components. To address these issues, different nanoplatforms have been developed to carry cellular or molecular components of vaccines to target cells and lymphoid tissues, thus promoting the durability and potency of immune responses against tumor cells and antigens besides decreasing side effects. Moreover, nanoparticles (NPs), as adjuvants and/or carriers, provide other advantages, including sufficient antigen loading and uptake by antigen-presenting cells (APCs), adaptable antigen presentation, high immunogenicity, high stability, increased lymph node retention, and precise targeting. Thus, nanovaccines also lead us to design and develop personalized vaccines against cervical cancer. Here, we discuss platforms that have been used in clinical trials for the treatment of cervical cancer, their advantages and disadvantages, platforms for developing nanovaccines, and how they improve the therapeutic efficacy of vaccines.
AB - Cervical cancer ranks fourth in terms of diagnosis and cancer-related deaths in women worldwide. Despite the approval of prophylactic vaccines against cervical cancers, these vaccines are not able to eradicate the existing ones. Therefore, various platforms have been developed to design therapeutic vaccines against cervical cancers, including DNA/RNA-based, protein/ peptide-based, vector-based, and cell-based platforms. Despite the advantages of each platform, therapeutic vaccines have displayed limited clinical benefit in patients with cervical cancer, which is partially associated with inefficient delivery of vaccine components. To address these issues, different nanoplatforms have been developed to carry cellular or molecular components of vaccines to target cells and lymphoid tissues, thus promoting the durability and potency of immune responses against tumor cells and antigens besides decreasing side effects. Moreover, nanoparticles (NPs), as adjuvants and/or carriers, provide other advantages, including sufficient antigen loading and uptake by antigen-presenting cells (APCs), adaptable antigen presentation, high immunogenicity, high stability, increased lymph node retention, and precise targeting. Thus, nanovaccines also lead us to design and develop personalized vaccines against cervical cancer. Here, we discuss platforms that have been used in clinical trials for the treatment of cervical cancer, their advantages and disadvantages, platforms for developing nanovaccines, and how they improve the therapeutic efficacy of vaccines.
KW - Cervical cancer
KW - Immune response
KW - Nanotechnology
KW - Nanovaccine
KW - Therapeutic vaccine
UR - http://www.scopus.com/inward/record.url?scp=105010567353&partnerID=8YFLogxK
U2 - 10.34172/apb.43712
DO - 10.34172/apb.43712
M3 - Review article
AN - SCOPUS:105010567353
SN - 2228-5881
VL - 15
SP - 46
EP - 59
JO - Advanced Pharmaceutical Bulletin
JF - Advanced Pharmaceutical Bulletin
IS - 1
ER -