Modeling and optimization of surface roughness of epoxy/nanoparticles composite coating

A. F. Mohamed, J. Abu Alsoud, Mujahed Al-Dhaifallah, Hegazy Rezk, Mohamed K. Hassan

Research output: Contribution to journalArticlepeer-review

Abstract

In power plants, flue gases can cause severe corrosion damage in metallic parts such as flue ducts, heat exchangers, and boilers. Coating is an effective technique to prevent this damage.Arobust fuzzy model of the surface roughness (Ra and Rz) of flue gas ducts coated by protective composite coating from epoxy and nanoparticles was constructed based on the experimental dataset. The proposed model consists of four nanoparticles (ZnO, ZrO2, SiO2, and NiO) with 2%, 4%, 6%, and 8%, respectively. Response surface methodology (RSM) was used to optimize the process parameters and identify the optimal conditions for minimum surface roughness of this coated duct. To prove the superiority of the proposed fuzzy model, the model results were compared with those obtained by ANOVA, with the coefficient of determination and the root-mean-square error (RMSE) used as metrics. For Ra, for the first output response, using ANOVA, the coefficient-of-determination values were 0.9137 and 0.4037, respectively, for training and prediction. Similarly, for Rz, the second output response, the coefficient-of-determination results were 0.9695 and 0.4037, respectively, for training and prediction. In the fuzzy modeling of Ra, for the first output response, the RMSE values were 0.0 and 0.1455, respectively, for training and testing. The values for the coefficient of determination were 1.00 and 0.9807, respectively, for training and testing. The results prove the superiority of fuzzy modeling. For modeling the second output response Rz, the RMSE values were 0.0 and 0.0421, respectively, for training and testing, and the coefficient-of-determination values were 1.00 and 0.9959, respectively, for training and testing.

Original languageEnglish
Pages (from-to)71-83
Number of pages13
JournalComputers, Materials and Continua
Volume71
Issue number1
DOIs
StatePublished - 2022

Keywords

  • Coating
  • Materials
  • Modeling and optimization
  • Nanoparticles

Fingerprint

Dive into the research topics of 'Modeling and optimization of surface roughness of epoxy/nanoparticles composite coating'. Together they form a unique fingerprint.

Cite this