TY - JOUR
T1 - Magnetic response of Ho3+ doped Ni0.4Cu0.6HoyFe2-yO4 spinel ferrites and their correlation with crystallite size
AU - Abou Taleb, Manal F.
AU - Ibrahim, Mohamed M.
AU - Rahman, A. U.
AU - El-Bahy, Zeinhom M.
N1 - Publisher Copyright:
© 2024
PY - 2024/10/1
Y1 - 2024/10/1
N2 - This study investigates the magnetic response of Ho3+ doped Ni0.4Cu0.6HoyFe2-yO4 (y = 0.0, 0.02, 0.04, 0.06, and 0.08) spinel ferrites (SFs) and their correlation with crystallite size. The synthesis was achieved using a sol-gel auto-combustion (SGAC) route and performed different characterizations, including X-ray diffraction (XRD), Scanning electron microscope (SEM), Energy dispersive x-ray (EDX), Inductively coupled plasma atomic emission spectroscopy (ICP-AES), and vibrating sample magnetometer (VSM) analysis. The cubic spinel phase was verified via XRD in pure NCF and Ho3+ doped NCF samples. The lattice constant (a) was improved from 8.344 Å to 8.378 Å. The substitution of Ho3+ ions led to a decrease in porosity from 42.22 % to 39.54 %. The introduction of Ho3+ ions also reduced the crystallite size (D) from 37.05 nm to 27.72 nm. The specific surface area (S) was increased from 27.44 g/cm2 to 36.14 g/cm2 with the doping of Ho3+. The average particle size (DS) was decreased from 54 nm to 35 nm. The EDX and ICP-AES analyses confirmed the good agreement with the theoretical composition. The VSM measurements provided insights into their magnetic properties. Furthermore, the doping of Ho3+ ions enhanced coercivity (HC), while reducing saturation magnetization (MS) from 64.35 emu/g to 16.22 emu/g. The decrease in crystalline anisotropy (K) observed at higher concentrations of Ho3+ may result from the increase in coercivity, potentially attributable to the smaller crystallite size of the single-domain SFs particles. The single-phase matrix and their magnetic behaviour showed that the Ho3+ doped Ni–Cu SFs samples are suitable for high-frequency applications.
AB - This study investigates the magnetic response of Ho3+ doped Ni0.4Cu0.6HoyFe2-yO4 (y = 0.0, 0.02, 0.04, 0.06, and 0.08) spinel ferrites (SFs) and their correlation with crystallite size. The synthesis was achieved using a sol-gel auto-combustion (SGAC) route and performed different characterizations, including X-ray diffraction (XRD), Scanning electron microscope (SEM), Energy dispersive x-ray (EDX), Inductively coupled plasma atomic emission spectroscopy (ICP-AES), and vibrating sample magnetometer (VSM) analysis. The cubic spinel phase was verified via XRD in pure NCF and Ho3+ doped NCF samples. The lattice constant (a) was improved from 8.344 Å to 8.378 Å. The substitution of Ho3+ ions led to a decrease in porosity from 42.22 % to 39.54 %. The introduction of Ho3+ ions also reduced the crystallite size (D) from 37.05 nm to 27.72 nm. The specific surface area (S) was increased from 27.44 g/cm2 to 36.14 g/cm2 with the doping of Ho3+. The average particle size (DS) was decreased from 54 nm to 35 nm. The EDX and ICP-AES analyses confirmed the good agreement with the theoretical composition. The VSM measurements provided insights into their magnetic properties. Furthermore, the doping of Ho3+ ions enhanced coercivity (HC), while reducing saturation magnetization (MS) from 64.35 emu/g to 16.22 emu/g. The decrease in crystalline anisotropy (K) observed at higher concentrations of Ho3+ may result from the increase in coercivity, potentially attributable to the smaller crystallite size of the single-domain SFs particles. The single-phase matrix and their magnetic behaviour showed that the Ho3+ doped Ni–Cu SFs samples are suitable for high-frequency applications.
KW - Coercivity
KW - Crystallite size
KW - High-frequency
KW - Saturation magnetization
KW - Sol-gel auto combustion
UR - http://www.scopus.com/inward/record.url?scp=85198393415&partnerID=8YFLogxK
U2 - 10.1016/j.ceramint.2024.07.096
DO - 10.1016/j.ceramint.2024.07.096
M3 - Article
AN - SCOPUS:85198393415
SN - 0272-8842
VL - 50
SP - 37077
EP - 37084
JO - Ceramics International
JF - Ceramics International
IS - 19
ER -