Abstract
A comprehensive review of sentiment analysis for code-mixed and switched text corpus of Indian social media using machine learning (ML) approaches, based on recent research studies has been presented in this paper. Code-mixing and switching are linguistic behavior shown by the bilingual/multilingual population, primarily in spoken but also in written communication, especially on social media. Code-mixing involves combining lower linguistic units like words and phrases of a language into the sentences of other language (the base language) and code-switching involves switching to another language, for the length of one sentence or more. In code-mixing and switching, a bilingual person takes one or more words or phrases from one language and introduces them into another language while communicating in that language in spoken or written mode. People nowadays express their views and opinions on several issues on social media. In multilingual countries, people express their views using English as well as their native languages. Several reasons can be attributed to code-mixing. Lack of knowledge in one language on a particular subject, being empathetic, interjection and clarification are some to name. Sentiment analysis of monolingual social media content has been carried out for the last two decades. However, during recent years, Natural Language Processing (NLP) research focus has also shifted towards the exploration of code-mixed data, thereby, making code mixed sentiment analysis an evolving field of research.
Original language | English |
---|---|
Pages (from-to) | 455-467 |
Number of pages | 13 |
Journal | International Journal of Advanced Computer Science and Applications |
Volume | 13 |
Issue number | 2 |
DOIs | |
State | Published - 2022 |
Keywords
- Code mixing
- Corpus
- Deep learning
- Machine learning
- Nlp
- Sentiment analysis
- Social media text