TY - JOUR
T1 - Load Balancing Multi-Player MAB Approaches for RIS-Aided mmWave User Association
AU - Mohamed, Ehab Mahmoud
AU - Hashima, Sherief
AU - Hatano, Kohei
AU - Takimoto, Eiji
AU - Abdel-Nasser, Mohamed
N1 - Publisher Copyright:
© 2013 IEEE.
PY - 2023
Y1 - 2023
N2 - In this paper, multiple reconfigurable intelligent surface (RIS) boards are deployed to enhance millimeter wave (mmWave) communication in a harsh blockage environment, where mmWave line-of-sight (LoS) link is completely blocked. Herein, RIS-user association should be considered to maximize the users' achievable data rate while assuring load balance among the installed RIS panels. However, maximum received power (MRP) based RIS-user association will overload some of the RIS boards while keeping others unloaded, which causes RIS load to unbalance and decreases the users' achievable data rate. Instead, in this paper, an online learning methodology using centralized multi-player multi-armed bandit (MP-MAB) with arms' load balancing is proposed. In this formulation, mmWave users, RIS boards, and achievable users' rates act as the bandit game players, arms, and rewards. During the MAB game, the users learn how to avoid associating with the heavily loaded RIS boards, maximizing their achievable data rates, and balancing the RIS loads. Three centralized MP-MAB algorithms with arms' load balancing are proposed from the family of upper confidence bound (UCB) MAB algorithms. These algorithms are UCB1, Kullback-Leibler divergence UCB (KLUCB), and Minimax optimal stochastic strategy (MOSS) with arms' load balancing, i.e., UCB1-LB, KLUCB-LB, and MOSS-LB. Numerical analysis ensures the superior performance of the proposed algorithms over MRP-based RIS-user association and other benchmarks.
AB - In this paper, multiple reconfigurable intelligent surface (RIS) boards are deployed to enhance millimeter wave (mmWave) communication in a harsh blockage environment, where mmWave line-of-sight (LoS) link is completely blocked. Herein, RIS-user association should be considered to maximize the users' achievable data rate while assuring load balance among the installed RIS panels. However, maximum received power (MRP) based RIS-user association will overload some of the RIS boards while keeping others unloaded, which causes RIS load to unbalance and decreases the users' achievable data rate. Instead, in this paper, an online learning methodology using centralized multi-player multi-armed bandit (MP-MAB) with arms' load balancing is proposed. In this formulation, mmWave users, RIS boards, and achievable users' rates act as the bandit game players, arms, and rewards. During the MAB game, the users learn how to avoid associating with the heavily loaded RIS boards, maximizing their achievable data rates, and balancing the RIS loads. Three centralized MP-MAB algorithms with arms' load balancing are proposed from the family of upper confidence bound (UCB) MAB algorithms. These algorithms are UCB1, Kullback-Leibler divergence UCB (KLUCB), and Minimax optimal stochastic strategy (MOSS) with arms' load balancing, i.e., UCB1-LB, KLUCB-LB, and MOSS-LB. Numerical analysis ensures the superior performance of the proposed algorithms over MRP-based RIS-user association and other benchmarks.
KW - Millimeter wave
KW - multi-armed bandit
KW - reconfigurable intelligent surface
KW - user association
UR - http://www.scopus.com/inward/record.url?scp=85149173417&partnerID=8YFLogxK
U2 - 10.1109/ACCESS.2023.3244781
DO - 10.1109/ACCESS.2023.3244781
M3 - Article
AN - SCOPUS:85149173417
SN - 2169-3536
VL - 11
SP - 15816
EP - 15830
JO - IEEE Access
JF - IEEE Access
ER -