TY - JOUR
T1 - Isoetin from Isoetaceae Exhibits Superior Pentatransferase Inhibition in Breast Cancer
T2 - Comparative Computational Profiling with FDA-Approved Tucatinib
AU - Al Khzem, Abdulaziz H.
AU - Alturki, Mansour S.
AU - Almuzaini, Ohood K.
AU - Wali, Saad M.
AU - Almaghrabi, Mohammed
AU - Aldawsari, Mohammed F.
AU - Abduljabbar, Maram H.
AU - Alnemari, Reem M.
AU - Almalki, Atiah H.
AU - Rants’o, Thankhoe A.
N1 - Publisher Copyright:
© 2025 by the authors.
PY - 2025/5
Y1 - 2025/5
N2 - Background: Breast cancer, the most prevalent cancer among women globally, develops primarily in the breast’s ducts or lobules. Drug resistance is a significant challenge in treating advanced cases, contributing to over 685,000 breast cancer-related deaths annually, and identifying novel compounds that inhibit key proteins is crucial for developing effective therapies. Methods: In this study, five transferase proteins with PDB IDs were selected due to their involvement in breast cancer: 1A52, 3PP0, 4EJN, 4I23, and 7R9V. Multitargeted docking studies were conducted using three different docking strategies and Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) to calculate the binding affinities against the ZINC Natural compound library. Isoetin (ZINC000006523948), found mainly in Isoetaceae, was identified, and the results were compared with the Food and Drug Administration (FDA)-approved drug Tucatinib. In addition, molecular interaction fingerprints and pharmacokinetic profiling were evaluated. We also performed 5 ns WaterMap simulations to identify hydration sites and interactions, followed by 100 ns molecular dynamics (MD) simulations and MM/GBSA to assess the stability of the Isoetin–protein complexes. Results: The docking results indicated that Isoetin demonstrated superior binding and docking scores ranging from −9.901 to −13.903 kcal/mol compared to Tucatinib, which showed values between −4.875 and −10.948 kcal/mol, suggesting Isoetin’s potential efficacy as a therapeutic agent for breast cancer. Interaction fingerprints revealed significant interactions between Isoetin and key residues, including 28LEU, 12MET, 9PHE, 7ASP, 6ASN, and 6THR. The pharmacokinetics and DFT analysis of Isoetin supported its potential as a viable drug candidate. Furthermore, the 5 ns WaterMap simulations identified various hydration sites, and the 100 ns MD simulations showed that the Isoetin–protein complexes exhibited minimal deviations and fluctuations, indicating better stability than Tucatinib, and MM/GBSA confirmed Isoetin’s superior binding stability. Conclusions: Isoetin, a natural compound identified through in silico screening, demonstrates significant promise as a potential therapeutic agent for breast cancer as it outperforms the FDA-approved drug Tucatinib, the respective native and FDA-approved drug. However, experimental validation is necessary before considering Isoetin for clinical use.
AB - Background: Breast cancer, the most prevalent cancer among women globally, develops primarily in the breast’s ducts or lobules. Drug resistance is a significant challenge in treating advanced cases, contributing to over 685,000 breast cancer-related deaths annually, and identifying novel compounds that inhibit key proteins is crucial for developing effective therapies. Methods: In this study, five transferase proteins with PDB IDs were selected due to their involvement in breast cancer: 1A52, 3PP0, 4EJN, 4I23, and 7R9V. Multitargeted docking studies were conducted using three different docking strategies and Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) to calculate the binding affinities against the ZINC Natural compound library. Isoetin (ZINC000006523948), found mainly in Isoetaceae, was identified, and the results were compared with the Food and Drug Administration (FDA)-approved drug Tucatinib. In addition, molecular interaction fingerprints and pharmacokinetic profiling were evaluated. We also performed 5 ns WaterMap simulations to identify hydration sites and interactions, followed by 100 ns molecular dynamics (MD) simulations and MM/GBSA to assess the stability of the Isoetin–protein complexes. Results: The docking results indicated that Isoetin demonstrated superior binding and docking scores ranging from −9.901 to −13.903 kcal/mol compared to Tucatinib, which showed values between −4.875 and −10.948 kcal/mol, suggesting Isoetin’s potential efficacy as a therapeutic agent for breast cancer. Interaction fingerprints revealed significant interactions between Isoetin and key residues, including 28LEU, 12MET, 9PHE, 7ASP, 6ASN, and 6THR. The pharmacokinetics and DFT analysis of Isoetin supported its potential as a viable drug candidate. Furthermore, the 5 ns WaterMap simulations identified various hydration sites, and the 100 ns MD simulations showed that the Isoetin–protein complexes exhibited minimal deviations and fluctuations, indicating better stability than Tucatinib, and MM/GBSA confirmed Isoetin’s superior binding stability. Conclusions: Isoetin, a natural compound identified through in silico screening, demonstrates significant promise as a potential therapeutic agent for breast cancer as it outperforms the FDA-approved drug Tucatinib, the respective native and FDA-approved drug. However, experimental validation is necessary before considering Isoetin for clinical use.
KW - Isoetin
KW - WaterMap
KW - binding free energy
KW - breast cancer resistance
KW - tucatinib
UR - http://www.scopus.com/inward/record.url?scp=105006565185&partnerID=8YFLogxK
U2 - 10.3390/ph18050662
DO - 10.3390/ph18050662
M3 - Article
AN - SCOPUS:105006565185
SN - 1424-8247
VL - 18
JO - Pharmaceuticals
JF - Pharmaceuticals
IS - 5
M1 - 662
ER -