Ideal Parameter Estimation of Photocatalysis Process to Boost Amoxicillin Degradation Efficiency Using Marine Predators Optimization Algorithm

Mohamed K. Hassan, Daniel T. Cotfas, Hegazy Rezk, H. Youssef, Ahmed S. Shehata, Alaa A. El-Bary

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

This paper presents a methodology for determining the optimal parameters of a photocatalysis process for treating pharmaceutical wastewater. Three parameters are considered: pH value, catalyst dosages, and reaction time to boost the amoxicillin degradation efficiency (ADE). The proposed methodology contains two stages: fuzzy modelling and a parameter determination process using the marine predators algorithm (MPA). Firstly, based on the experimental dataset of ADE in terms of pH value, catalyst dosages, and reaction time, a robust fuzzy model is produced to model the photocatalysis/ozonation process. The target is reducing the root mean square error (RMSE) between the actual data and the experimental dataset. Using fuzzy, the RMSE decreased from 2.0248 using ANOVA to 0.3148 using fuzzy (decreased by 84%). Next, using the MPA, the optimal parameters of pH value, catalyst dosages, and reaction time corresponding to maximum ADE are determined. The suggested strategy boosted the ADE from 88.23% to a rate of 11.68% compared with the experimental and RSM approaches. Under this condition, the optimal solutions are 11, 384 mg/L, and 33.615 min, respectively, for pH, catalyst dosages, and reaction time.

Original languageEnglish
Article number6769271
JournalInternational Journal of Photoenergy
Volume2024
DOIs
StatePublished - 2024

Keywords

  • amoxicillin degradation
  • artificial intelligence
  • environmental protection
  • photocatalysis
  • wastewater treatment

Fingerprint

Dive into the research topics of 'Ideal Parameter Estimation of Photocatalysis Process to Boost Amoxicillin Degradation Efficiency Using Marine Predators Optimization Algorithm'. Together they form a unique fingerprint.

Cite this