TY - JOUR
T1 - Hybrid Feature and Optimized Deep Learning Model Fusion for Detecting Hateful Arabic Content
AU - Gasmi, Karim
AU - Ltaifa, Ibtihel Ben
AU - Abdalrahman, Alameen Eltoum
AU - Hamid, Omer
AU - Altaieb, Mohamed Othman
AU - Ali, Shahzad
AU - Ammar, Lassaad Ben
AU - Mrabet, Manel
N1 - Publisher Copyright:
© 2013 IEEE.
PY - 2025
Y1 - 2025
N2 - Detecting hate speech in Arabic social media content is critical for ensuring safe, inclusive, and respectful online communication. However, this task remains challenging due to Arabic’s morphological richness, dialectal variations such as Levantine, and the scarcity of high-quality annotated data. This study proposes a comprehensive and language-aware approach to Arabic hate speech detection that integrates advanced preprocessing, targeted data augmentation, hybrid feature extraction, and deep ensemble learning. Our experiments are conducted on a Levantine Arabic tweet dataset labeled hateful or non-hateful. To address lexical variability and noise common in user-generated content, we apply a dedicated preprocessing pipeline that includes normalization, diacritic removal, and emoji filtering. To further enhance generalization and mitigate data imbalance, we employ two augmentation strategies: synonym replacement using a curated Arabic lexicon and semantic-preserving back-translation through English. We investigate lexical and contextual approaches for feature extraction, including TF-IDF vectors, contextualized AraBERT embeddings, and a hybrid combination of both. These features are input into multiple deep learning classifiers, including CNN-BiGRU, BiLSTM, and DNN architectures. To maximize predictive performance, we develop an ensemble framework that integrates these models. The final prediction is obtained through a weighted fusion of individual model outputs, where the optimal weights are selected using the Grey Wolf Optimizer (GWO), aiming to maximize classification accuracy. Experimental results demonstrate that our proposed hybrid and ensemble-based architecture achieves superior performance, with an accuracy of 83.33% and a ROC-AUC score of 89.5%, outperforming individual models and conventional baselines. These findings highlight the effectiveness of hybrid feature representations and nature-inspired optimization in enhancing Arabic hate speech detection. Our approach offers a scalable, linguistically informed solution for robust content moderation in Arabic digital spaces.
AB - Detecting hate speech in Arabic social media content is critical for ensuring safe, inclusive, and respectful online communication. However, this task remains challenging due to Arabic’s morphological richness, dialectal variations such as Levantine, and the scarcity of high-quality annotated data. This study proposes a comprehensive and language-aware approach to Arabic hate speech detection that integrates advanced preprocessing, targeted data augmentation, hybrid feature extraction, and deep ensemble learning. Our experiments are conducted on a Levantine Arabic tweet dataset labeled hateful or non-hateful. To address lexical variability and noise common in user-generated content, we apply a dedicated preprocessing pipeline that includes normalization, diacritic removal, and emoji filtering. To further enhance generalization and mitigate data imbalance, we employ two augmentation strategies: synonym replacement using a curated Arabic lexicon and semantic-preserving back-translation through English. We investigate lexical and contextual approaches for feature extraction, including TF-IDF vectors, contextualized AraBERT embeddings, and a hybrid combination of both. These features are input into multiple deep learning classifiers, including CNN-BiGRU, BiLSTM, and DNN architectures. To maximize predictive performance, we develop an ensemble framework that integrates these models. The final prediction is obtained through a weighted fusion of individual model outputs, where the optimal weights are selected using the Grey Wolf Optimizer (GWO), aiming to maximize classification accuracy. Experimental results demonstrate that our proposed hybrid and ensemble-based architecture achieves superior performance, with an accuracy of 83.33% and a ROC-AUC score of 89.5%, outperforming individual models and conventional baselines. These findings highlight the effectiveness of hybrid feature representations and nature-inspired optimization in enhancing Arabic hate speech detection. Our approach offers a scalable, linguistically informed solution for robust content moderation in Arabic digital spaces.
KW - Ensemble learning
KW - grey wolf algorithm
KW - hateful content detection
KW - weight selection
UR - http://www.scopus.com/inward/record.url?scp=105011672080&partnerID=8YFLogxK
U2 - 10.1109/ACCESS.2025.3591673
DO - 10.1109/ACCESS.2025.3591673
M3 - Article
AN - SCOPUS:105011672080
SN - 2169-3536
VL - 13
SP - 131411
EP - 131431
JO - IEEE Access
JF - IEEE Access
ER -