Human activity recognition: A scheme using multiple cues

Samy Sadek, Ayoub Al-Hamadi, Bernd Michaelis, Usama Sayed

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

12 Scopus citations

Abstract

In this work, a schematic model for human activity recognition based on multiple cues is introduced. In the beginning, a sequence of temporal silhouettes of the moving human body parts are extracted from a video clip (i.e., an action snippet). Next, each action snippet is temporally split into several time-slices represented by fuzzy intervals. As shape features, a variety of descriptors both boundary-based (Fourier descriptors, Curvature features) and region-based (Moments, Moment-based features) are then extracted from the silhouettes at each time-slice. Finally, an NB (Naïve Bayes) classifier is learned in the feature space for activity classification. The performance of the method was evaluated on the KTH dataset and the obtained results are quite encouraging and show that an accuracy on par with or exceeding that of existing methods is achievable. Further the simplicity and computational efficiency of the features employed allow the method to achieve real-time performance, and thus it can provide latency guarantees to real-time applications.

Original languageEnglish
Title of host publicationAdvances in Visual Computing - 6th International Symposium, ISVC 2010, Proceedings
Pages574-583
Number of pages10
EditionPART 2
DOIs
StatePublished - 2010
Externally publishedYes
Event6th International, Symposium on Visual Computing, ISVC 2010 - Las Vegas, NV, United States
Duration: 29 Nov 20101 Dec 2010

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
NumberPART 2
Volume6454 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference6th International, Symposium on Visual Computing, ISVC 2010
Country/TerritoryUnited States
CityLas Vegas, NV
Period29/11/101/12/10

Fingerprint

Dive into the research topics of 'Human activity recognition: A scheme using multiple cues'. Together they form a unique fingerprint.

Cite this