Highlighting the Compositional Changes of the Sm2O3/MgO-Containing Cellulose Acetate Films for Wound Dressings

Yousef A.A. Alghuwainem, Mohamed Gouda, Mai M. Khalaf, Fakiha El Taib Heakal, Hanan A. Albalwi, Abraham Elmushyakhi, Hany M.Abd El-Lateef

Research output: Contribution to journalArticlepeer-review

12 Scopus citations

Abstract

The development of wound dressing materials with appropriate specifications is still a challenge to overcome the current limitations of conventional medical bandages. In this regard, simple and fast methods are highly recommended, such as film casting. In addition, deliverable nanoparticles that can act to accelerate wound integration, such as samarium oxide (Sm2O3) and magnesium oxide (MgO), might represent a potential design with a novel compositional combination. In the present research, the casted film of cellulose acetate (CA) was mixed with different ratios of metal oxides, such as samarium oxide (Sm2O3) and magnesium oxide (MgO). The tests used for the film examination were X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The SEM graphs of CA films represent the surface morphology of Sm2O3@CA, MgO@CA, and Sm2O3/MgO/GO@CA. It was found that the scaffolds’ surface contained a high porosity ratio with diameters of 1.5–5 µm. On the other hand, the measurement of contact angle exhibits a variable trend starting from 27° to 29° for pristine CA and Sm2O3/MgO/GO@CA. The cell viability test exhibits a noticeable increase in cell growth with a decrease in the concentration. In addition, the IC50 was determined at 6 mg/mL, while the concentration of scaffolds of 20 mg/mL caused cellular growth to be around 106%.

Original languageEnglish
Article number4964
JournalPolymers
Volume14
Issue number22
DOIs
StatePublished - Nov 2022

Keywords

  • MgO
  • SmO
  • cellulose acetate
  • wound bandages
  • wound dressing

Fingerprint

Dive into the research topics of 'Highlighting the Compositional Changes of the Sm2O3/MgO-Containing Cellulose Acetate Films for Wound Dressings'. Together they form a unique fingerprint.

Cite this