TY - JOUR
T1 - Harnessing genetic diversity in cotton for enhanced resilience against salt stress by using agro-physiological characters
AU - Zafar, Muhammad Mubashar
AU - Ijaz, Aqsa
AU - Anwar, Zunaira
AU - Iqbal, Muhammad Shahid
AU - Zafar, Saba
AU - Subhan, Mishal
AU - Seleiman, Mahmoud F.
AU - Alhammad, Bushra A.
AU - Aljabri, Maha
AU - Qiao, Fei
AU - Shoukat, Abbas
AU - Shakeel, Amir
AU - Ercisli, Sezai
AU - Ali, Arfan
AU - Razzaq, Abdul
AU - Jiang, Xuefei
N1 - Publisher Copyright:
© 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
PY - 2025
Y1 - 2025
N2 - Creating salt-tolerant genotypes is crucial for maximizing the productivity under salinized land. To evaluate genetic diversity for salt tolerance, 35 diverse cotton accessions were screened under 17 dS m−1 salt stress conditions using 20 agronomic and physiological traits relevant to salt tolerance. The general linear model analysis indicated significant salinity impacts across the studied accessions, and genotype × treatment effects were also significant for all parameters examined. Among all 35 studied accessions; the genotypes CCB-1, CCB-2, CCB-28, CCB-3, CCB-4, Ghauri-1, JSQ-70, and JSQ-71 showed considerably higher performance for plant height, boll per plant, boll weight, lint percentage, seed cotton yield and fiber quality traits under salt stress. Physiological traits, chlorophyll and carotenoid contents, total soluble proteins, K+, and K+/Na+ were reduced under saline conditions, while biochemical traits such as catalase, superoxide dismutase, peroxidase, H2O2 and MDA level increased. The genotypes CCB-17, CCB-18, CCB-19, CCB-20, CCB-21, CCB-22, Hatf-3, Badar-1, Eagle-2, Eagle-4, CCB-23, CCB-24, CCB-25, CCB-26 and CCB-28 exhibited lower values for agro-physiological and fiber quality character respectively, signifying their sensitivity to salt stress. Under salinity, these genotypes showed reduced antioxidant levels and increased values for K+/Na+, Na+, H2O2, and MDA contents. Whereas the genotypes CCB-5, CCB-6, CCB-7, CCB-8, CCB-9, CCB-10, CCB-11, CCB-12, CCB-13, CCB-14, CCB-15, and CCB-16 demonstrated moderate performance for these traits under salt stress conditions respectively. Utilizing multivariate analysis techniques (cluster and PCA), 35 genotypes have been categorized into three groups based on studied traits: tolerant (cluster-1), moderately tolerant (cluster-2), and susceptible (cluster-3) under saline conditions.
AB - Creating salt-tolerant genotypes is crucial for maximizing the productivity under salinized land. To evaluate genetic diversity for salt tolerance, 35 diverse cotton accessions were screened under 17 dS m−1 salt stress conditions using 20 agronomic and physiological traits relevant to salt tolerance. The general linear model analysis indicated significant salinity impacts across the studied accessions, and genotype × treatment effects were also significant for all parameters examined. Among all 35 studied accessions; the genotypes CCB-1, CCB-2, CCB-28, CCB-3, CCB-4, Ghauri-1, JSQ-70, and JSQ-71 showed considerably higher performance for plant height, boll per plant, boll weight, lint percentage, seed cotton yield and fiber quality traits under salt stress. Physiological traits, chlorophyll and carotenoid contents, total soluble proteins, K+, and K+/Na+ were reduced under saline conditions, while biochemical traits such as catalase, superoxide dismutase, peroxidase, H2O2 and MDA level increased. The genotypes CCB-17, CCB-18, CCB-19, CCB-20, CCB-21, CCB-22, Hatf-3, Badar-1, Eagle-2, Eagle-4, CCB-23, CCB-24, CCB-25, CCB-26 and CCB-28 exhibited lower values for agro-physiological and fiber quality character respectively, signifying their sensitivity to salt stress. Under salinity, these genotypes showed reduced antioxidant levels and increased values for K+/Na+, Na+, H2O2, and MDA contents. Whereas the genotypes CCB-5, CCB-6, CCB-7, CCB-8, CCB-9, CCB-10, CCB-11, CCB-12, CCB-13, CCB-14, CCB-15, and CCB-16 demonstrated moderate performance for these traits under salt stress conditions respectively. Utilizing multivariate analysis techniques (cluster and PCA), 35 genotypes have been categorized into three groups based on studied traits: tolerant (cluster-1), moderately tolerant (cluster-2), and susceptible (cluster-3) under saline conditions.
KW - Genetic variability
KW - antioxidant analysis
KW - reactive oxygen species
UR - http://www.scopus.com/inward/record.url?scp=85212057828&partnerID=8YFLogxK
U2 - 10.1080/1343943X.2024.2439874
DO - 10.1080/1343943X.2024.2439874
M3 - Article
AN - SCOPUS:85212057828
SN - 1343-943X
VL - 28
SP - 51
EP - 68
JO - Plant Production Science
JF - Plant Production Science
IS - 1
ER -