TY - JOUR
T1 - Fibrin scaffold encapsulated with epigallocatechin gallate microspheres promote neural regeneration and motor function recovery after traumatic spinal cord injury in rats
AU - Alissa, Mohammed
AU - Alghamdi, Abdullah
AU - Alshehri, Mohammed A.
N1 - Publisher Copyright:
© 2024 Elsevier Ltd
PY - 2025/4
Y1 - 2025/4
N2 - Traumatic spinal cord injury (TSCI) is a serious medical issue where there is a loss of sensorimotor function. Current interventions continue to lack the ability to successfully enhance these conditions, therefore, it is crucial to consider alternative effective strategies. Currently, we investigated the effects of fibrin scaffold encapsulated with epigallocatechin gallate (EGCG) microspheres in the recovery of SCI in rats. A total of sixty mature male Sprague-Dawley rats were separated into four groups of the same size: TSCI, fibrin, EGCG, and Fibrin+EGCG. Samples of tissue were gathered at the location of the injury for additional examination. The treatment groups showed significantly higher levels of neurons, antioxidative biomarkers (T-AOC: total antioxidant capacity, GSH: glutathione, and SOD: superoxide dismutase), neurofilament light polypeptide (NEFL) and interleukin 10 (IL-10) genes, and neurological function scores compared to the TSCI group, with the Fibrin+EGCG group displaying the most noticeable improvements. Throughout the treatment process, there was a notable reduction in the amounts of apoptotic and glial cells, as well as levels of malondialdehyde (MDA) and proinflammatory genes (TNF-α: tumor necrosis factor alpha and IL-1β: interleukin-1 beta), especially in the Fibrin+EGCG group compared to the TSCI group. Our findings suggest that EGCG enclosed in microspheres could enhance the prevention of injury spreading and the enhancement of pathological and behavioral symptoms when delivered to the location of spinal cord injury using a fibrin scaffold.
AB - Traumatic spinal cord injury (TSCI) is a serious medical issue where there is a loss of sensorimotor function. Current interventions continue to lack the ability to successfully enhance these conditions, therefore, it is crucial to consider alternative effective strategies. Currently, we investigated the effects of fibrin scaffold encapsulated with epigallocatechin gallate (EGCG) microspheres in the recovery of SCI in rats. A total of sixty mature male Sprague-Dawley rats were separated into four groups of the same size: TSCI, fibrin, EGCG, and Fibrin+EGCG. Samples of tissue were gathered at the location of the injury for additional examination. The treatment groups showed significantly higher levels of neurons, antioxidative biomarkers (T-AOC: total antioxidant capacity, GSH: glutathione, and SOD: superoxide dismutase), neurofilament light polypeptide (NEFL) and interleukin 10 (IL-10) genes, and neurological function scores compared to the TSCI group, with the Fibrin+EGCG group displaying the most noticeable improvements. Throughout the treatment process, there was a notable reduction in the amounts of apoptotic and glial cells, as well as levels of malondialdehyde (MDA) and proinflammatory genes (TNF-α: tumor necrosis factor alpha and IL-1β: interleukin-1 beta), especially in the Fibrin+EGCG group compared to the TSCI group. Our findings suggest that EGCG enclosed in microspheres could enhance the prevention of injury spreading and the enhancement of pathological and behavioral symptoms when delivered to the location of spinal cord injury using a fibrin scaffold.
KW - EGCG
KW - Fibrin scaffold
KW - Microspheres
KW - Traumatic spinal cord injury
UR - http://www.scopus.com/inward/record.url?scp=85212576513&partnerID=8YFLogxK
U2 - 10.1016/j.tice.2024.102691
DO - 10.1016/j.tice.2024.102691
M3 - Article
C2 - 39708392
AN - SCOPUS:85212576513
SN - 0040-8166
VL - 93
JO - Tissue and Cell
JF - Tissue and Cell
M1 - 102691
ER -