TY - JOUR
T1 - Federated LeViT-ResUNet for Scalable and Privacy-Preserving Agricultural Monitoring Using Drone and Internet of Things Data
AU - Aldossary, Mohammad
AU - Almutairi, Jaber
AU - Alzamil, Ibrahim
N1 - Publisher Copyright:
© 2025 by the authors.
PY - 2025/4
Y1 - 2025/4
N2 - Precision agriculture is necessary for dealing with problems like pest outbreaks, a lack of water, and declining crop health. Manual inspections and broad-spectrum pesticide application are inefficient, time-consuming, and dangerous. New drone photography and IoT sensors offer quick, high-resolution, multimodal agricultural data collecting. Regional diversity, data heterogeneity, and privacy problems make it hard to conclude these data. This study proposes a lightweight, hybrid deep learning architecture called federated LeViT-ResUNet that combines the spatial efficiency of LeViT transformers with ResUNet’s exact pixel-level segmentation to address these issues. The system uses multispectral drone footage and IoT sensor data to identify real-time insect hotspots, crop health, and yield prediction. The dynamic relevance and sparsity-based feature selector (DRS-FS) improves feature ranking and reduces redundancy. Spectral normalization, spatial–temporal alignment, and dimensionality reduction provide reliable input representation. Unlike centralized models, our platform trains over-dispersed client datasets using federated learning to preserve privacy and capture regional trends. A huge, open-access agricultural dataset from varied environmental circumstances was used for simulation experiments. The suggested approach improves on conventional models like ResNet, DenseNet, and the vision transformer with a 98.9% classification accuracy and 99.3% AUC. The LeViT-ResUNet system is scalable and sustainable for privacy-preserving precision agriculture because of its high generalization, low latency, and communication efficiency. This study lays the groundwork for real-time, intelligent agricultural monitoring systems in diverse, resource-constrained farming situations.
AB - Precision agriculture is necessary for dealing with problems like pest outbreaks, a lack of water, and declining crop health. Manual inspections and broad-spectrum pesticide application are inefficient, time-consuming, and dangerous. New drone photography and IoT sensors offer quick, high-resolution, multimodal agricultural data collecting. Regional diversity, data heterogeneity, and privacy problems make it hard to conclude these data. This study proposes a lightweight, hybrid deep learning architecture called federated LeViT-ResUNet that combines the spatial efficiency of LeViT transformers with ResUNet’s exact pixel-level segmentation to address these issues. The system uses multispectral drone footage and IoT sensor data to identify real-time insect hotspots, crop health, and yield prediction. The dynamic relevance and sparsity-based feature selector (DRS-FS) improves feature ranking and reduces redundancy. Spectral normalization, spatial–temporal alignment, and dimensionality reduction provide reliable input representation. Unlike centralized models, our platform trains over-dispersed client datasets using federated learning to preserve privacy and capture regional trends. A huge, open-access agricultural dataset from varied environmental circumstances was used for simulation experiments. The suggested approach improves on conventional models like ResNet, DenseNet, and the vision transformer with a 98.9% classification accuracy and 99.3% AUC. The LeViT-ResUNet system is scalable and sustainable for privacy-preserving precision agriculture because of its high generalization, low latency, and communication efficiency. This study lays the groundwork for real-time, intelligent agricultural monitoring systems in diverse, resource-constrained farming situations.
KW - crop health assessment
KW - drone-based monitoring
KW - federated learning
KW - LeViT-ResUNet
KW - precision agriculture
KW - sustainable farming
UR - http://www.scopus.com/inward/record.url?scp=105003679655&partnerID=8YFLogxK
U2 - 10.3390/agronomy15040928
DO - 10.3390/agronomy15040928
M3 - Article
AN - SCOPUS:105003679655
SN - 2073-4395
VL - 15
JO - Agronomy
JF - Agronomy
IS - 4
M1 - 928
ER -