Fast Constant-Time Modular Inversion over Fp Resistant to Simple Power Analysis Attacks for IoT Applications

Anissa Sghaier, Medien Zeghid, Chiraz Massoud, Hassan Yousif Ahmed, Abdellah Chehri, Mohsen Machhout

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

The advent of the Internet of Things (IoT) has enabled millions of potential new uses for consumers and businesses. However, with these new uses emerge some of the more pronounced risks in the connected object domain. Finite fields play a crucial role in many public-key crypto- graphic algorithms (PKCs), which are used extensively for the security and privacy of IoT devices, consumer electronic equipment, and software systems. Given that inversion is the most sensitive and costly finite field arithmetic operation in PKCs, this paper proposes a new, fast, constant-time inverter over prime fields Fp based on the traditional Binary Extended Euclidean (BEE) algorithm. A modified BEE algorithm (MBEEA) resistant to simple power analysis attacks (SPA) is presented, and the design performance area-delay over Fp is explored. Furthermore, the BEE algorithm, mod- ular addition, and subtraction are revisited to optimize and balance the MBEEA signal flow and resource utilization efficiency. The proposed MBEEA architecture was implemented and tested on Xilinx FPGA Virtex #5, #6, and #7 devices. Our implementation over Fp (length of p = 256 bits) with 2035 slices achieved one modular inversion in only 1.12 μs on Virtex-7. Finally, we conducted a thorough comparison and performance analysis to demonstrate that the proposed design outper- forms the competing designs, i.e., has a lower area-delay product (ADP) than the reported inverters.

Original languageEnglish
Article number2535
JournalSensors
Volume22
Issue number7
DOIs
StatePublished - 1 Apr 2022

Keywords

  • ADP
  • BEEA
  • FPGA
  • IoT
  • Modular addition and subtraction
  • Modular inversion
  • PKCs
  • Prime field
  • SPA

Fingerprint

Dive into the research topics of 'Fast Constant-Time Modular Inversion over Fp Resistant to Simple Power Analysis Attacks for IoT Applications'. Together they form a unique fingerprint.

Cite this