TY - JOUR
T1 - Experimental and theoretical studies of Rhodamine B direct dye sorption onto clay-cellulose composite
AU - Kausar, Abida
AU - Shahzad, Ramsha
AU - Asim, Sadia
AU - BiBi, Shamsa
AU - Iqbal, Jibran
AU - Muhammad, Nawshad
AU - Sillanpaa, Mika
AU - Din, Israf Ud
N1 - Publisher Copyright:
© 2020 Elsevier B.V.
PY - 2021/4/15
Y1 - 2021/4/15
N2 - Dyes are one of the main water pollutants and many biological and environmental problems are associated with them. Rhodamine B (RhB) is one of the most commonly used dye in the textile, printing, paints, and paper industry. The present work reports the sorptive removal of Rhodamine B direct dye from wastewater onto developed cellulose and clay composites. Sorbent material cellulose (48 g) was extracted from 80 g of bagasse. Then cellulose and two types of acid-activated clays were used to make efficient sorbent namely, composite I and II. Various characterization techniques were used to study the physiochemical properties of the synthesized composites. Different sorption affecting parameters were optimized such as initial dye concentration, time, temperature, pH, and composite dose for the efficient sorption of RhB onto composites. Equilibrium time was 60 min for composite-I and 80 min for composite-II Non-linear equilibrium isotherm and kinetic models demonstrated the fitness of Pseudo-second order and Redlich-Peterson isotherm. Composite-I and II removed 85.9% and 95.6% of RhB at pH 2 in 120 min, respectively. The sorption efficiency was checked, and sorbents were applied to real textile effluent which showed promising removal efficiency of over 90%. To confirm the experimental results, computational optimization and vibrational calculations were carried out using the Gaussian 09 program package with 3–21 G, 6–311 G, and 6–311+G basic sets. Geometric parameters showed the planar geometry. In the case of FTIR spectra, fundamental ring vibrations were observed with C-H and C-C. This study suggests that the developed composites have exceptional sorption ability to remove the dye contents from aqueous media.
AB - Dyes are one of the main water pollutants and many biological and environmental problems are associated with them. Rhodamine B (RhB) is one of the most commonly used dye in the textile, printing, paints, and paper industry. The present work reports the sorptive removal of Rhodamine B direct dye from wastewater onto developed cellulose and clay composites. Sorbent material cellulose (48 g) was extracted from 80 g of bagasse. Then cellulose and two types of acid-activated clays were used to make efficient sorbent namely, composite I and II. Various characterization techniques were used to study the physiochemical properties of the synthesized composites. Different sorption affecting parameters were optimized such as initial dye concentration, time, temperature, pH, and composite dose for the efficient sorption of RhB onto composites. Equilibrium time was 60 min for composite-I and 80 min for composite-II Non-linear equilibrium isotherm and kinetic models demonstrated the fitness of Pseudo-second order and Redlich-Peterson isotherm. Composite-I and II removed 85.9% and 95.6% of RhB at pH 2 in 120 min, respectively. The sorption efficiency was checked, and sorbents were applied to real textile effluent which showed promising removal efficiency of over 90%. To confirm the experimental results, computational optimization and vibrational calculations were carried out using the Gaussian 09 program package with 3–21 G, 6–311 G, and 6–311+G basic sets. Geometric parameters showed the planar geometry. In the case of FTIR spectra, fundamental ring vibrations were observed with C-H and C-C. This study suggests that the developed composites have exceptional sorption ability to remove the dye contents from aqueous media.
KW - Adsorption
KW - Cellulose
KW - Clay
KW - Composite
KW - Dye
KW - Theoretical studies
UR - http://www.scopus.com/inward/record.url?scp=85099821207&partnerID=8YFLogxK
U2 - 10.1016/j.molliq.2020.115165
DO - 10.1016/j.molliq.2020.115165
M3 - Article
AN - SCOPUS:85099821207
SN - 0167-7322
VL - 328
JO - Journal of Molecular Liquids
JF - Journal of Molecular Liquids
M1 - 115165
ER -