Evaluation of cold storage procedure via Galerkin method in existence of nanomaterial

Research output: Contribution to journalArticlepeer-review

Abstract

In this study, a numerical method was employed to model the unsteady process of freezing. The system comprises an enclosure with fins, filled with a mixture of nanoparticles and H2O. The mesh style adapts dynamically during the freezing process to better capture the evolving ice front, thereby enhancing simulation accuracy. Validation against previous studies confirms the model's reliability. Three levels of nanoparticle diameter (dp) and concentration (ϕ) were tested, examining their effects on the freezing process. The results indicate that the fastest solidification occurs with medium-sized nanoparticles at the highest concentration. Specifically, at ϕ = 0.02, an initial increase in dp declines the freezing time by around 11.72 %. However, further increasing dp beyond 40 nm results in a 25.75 % increase in freezing time. Additionally, increasing the nanoparticle concentration significantly reduces solidification time by approximately 41.31 %. The introduction of nanomaterials decreases the required freezing time from 9514.19 s to 5583.51 s, demonstrating a substantial improvement in efficiency.

Original languageEnglish
Article number114053
JournalJournal of Energy Storage
Volume102
DOIs
StatePublished - 15 Nov 2024

Keywords

  • Conduction mode
  • Freezing
  • Heat transfer
  • NEPCM
  • Nanomaterial
  • Solidification
  • Transient phenomena

Fingerprint

Dive into the research topics of 'Evaluation of cold storage procedure via Galerkin method in existence of nanomaterial'. Together they form a unique fingerprint.

Cite this