TY - JOUR
T1 - Evaluating the environmental impacts and energy performance of a wind farm system utilizing the life-cycle assessment method
T2 - A practical case study
AU - Gomaa, Mohamed R.
AU - Rezk, Hegazy
AU - Mustafa, Ramadan J.
AU - Al-Dhaifallah, Mujahed
N1 - Publisher Copyright:
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
PY - 2019/8/24
Y1 - 2019/8/24
N2 - The ever-increasing popularity of finding alternative forms of renewable energy has seen an increased interest and utilization of wind energy. The objective of this research therefore, is to evaluate the environmental impacts and energy performance of wind farms. This study was operationalized in Jordan using a life-cycle assessment (LCA) method. The environmental impact is evaluated through lifecycle emissions that include all emissions during various phases of the project. The energy performance is illustrated by the energy indicators. The latter is the energy payback ratio (EPR) and the energy payback time (EPT). This study was conducted on a 38 Vestas V112 3-MW wind turbine located in the southern region of Tafilah in Jordan that is host to the country's first wind farm. SimaPro 7.1 software was used as the modeling platform. Data for this study were collated from various sources, including, manufacturers, the wind turbine farm, and local subcontractors. A software database was used for the modeling process, and the data obtained modeled in accordance with ISO 14040 standards. The findings of this study indicate that the impacts of the transportation and installation phases were moderate, with the largest negative environmental impact deriving from the manufacturing phase. To remedy some of the negative impacts in these phases, green cement was used for the turbine foundation to limit the environmental impacts to be had during the installation phase, while the transportation phase saw the utilization of locally-manufactured turbines. Furthermore, an evaluation of the study's results revealed that the energy payback period of the wind farm is approximately 0.69 year (8 months), while the payback ratio is 29, and the annual CO2 saving estimated to be at 2.23 × 108 kg, 3.02 × 108 kg, 3.10 × 108 kg for an annual generated power of 371, 501, and 515 GWh/year.
AB - The ever-increasing popularity of finding alternative forms of renewable energy has seen an increased interest and utilization of wind energy. The objective of this research therefore, is to evaluate the environmental impacts and energy performance of wind farms. This study was operationalized in Jordan using a life-cycle assessment (LCA) method. The environmental impact is evaluated through lifecycle emissions that include all emissions during various phases of the project. The energy performance is illustrated by the energy indicators. The latter is the energy payback ratio (EPR) and the energy payback time (EPT). This study was conducted on a 38 Vestas V112 3-MW wind turbine located in the southern region of Tafilah in Jordan that is host to the country's first wind farm. SimaPro 7.1 software was used as the modeling platform. Data for this study were collated from various sources, including, manufacturers, the wind turbine farm, and local subcontractors. A software database was used for the modeling process, and the data obtained modeled in accordance with ISO 14040 standards. The findings of this study indicate that the impacts of the transportation and installation phases were moderate, with the largest negative environmental impact deriving from the manufacturing phase. To remedy some of the negative impacts in these phases, green cement was used for the turbine foundation to limit the environmental impacts to be had during the installation phase, while the transportation phase saw the utilization of locally-manufactured turbines. Furthermore, an evaluation of the study's results revealed that the energy payback period of the wind farm is approximately 0.69 year (8 months), while the payback ratio is 29, and the annual CO2 saving estimated to be at 2.23 × 108 kg, 3.02 × 108 kg, 3.10 × 108 kg for an annual generated power of 371, 501, and 515 GWh/year.
KW - CO emission
KW - Environmental impacts
KW - Life cycle assessment
KW - Renewable energy
KW - Wind farm
UR - http://www.scopus.com/inward/record.url?scp=85071624656&partnerID=8YFLogxK
U2 - 10.3390/en12173263
DO - 10.3390/en12173263
M3 - Article
AN - SCOPUS:85071624656
SN - 1996-1073
VL - 12
JO - Energies
JF - Energies
IS - 17
M1 - en12173263
ER -