TY - JOUR
T1 - Enhanced Teaching Learning-Based Algorithm for Fuel Costs and Losses Minimization in AC-DC Systems
AU - Sarhan, Shahenda
AU - Shaheen, Abdullah M.
AU - El-Sehiemy, Ragab A.
AU - Gafar, Mona
N1 - Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2022/7/1
Y1 - 2022/7/1
N2 - The Teaching Learning-Based Algorithm (TLBA) is a powerful and effective optimization approach. TLBA mimics the teaching-learning process in a classroom, where TLBA’s iterative computing process is separated into two phases, unlike standard evolutionary algorithms and swarm intelligence algorithms, and each phase conducts an iterative learning operation. Advanced technologies of Voltage Source Converters (VSCs) enable greater active and reactive power regulation in these networks. Various objectives are addressed for optimal energy management, with the goal of attaining economic and technical advantages by decreasing overall production fuel costs and transmission power losses in AC-DC transmission networks. In this paper, the TLBA is applied for various sorts of nonlinear and multimodal functioning of hybrid alternating current (AC) and multi-terminal direct current (DC) power grids. The proposed TLBA is evaluated on modified IEEE 30-bus and IEEE 57-bus AC-DC networks and compared to other published methods in the literature. Numerical results demonstrate that the proposed TLBA has great effectiveness and robustness indices over the others. Economically, the reduction percentages of 13.84 and 21.94% are achieved for the IEEE 30-bus and IEEE 57-bus test systems when the fuel costs are minimized. Technically, significant improvement in the transmission power losses with reduction 28.01% and 69.83%, are found for the IEEE 30-bus and IEEE 57-bus test system compared to the initial case. Nevertheless, TLBA has faster convergence, higher quality for the final optimal solution, and more power for escaping from convergence to local optima compared to other published methods in the literature.
AB - The Teaching Learning-Based Algorithm (TLBA) is a powerful and effective optimization approach. TLBA mimics the teaching-learning process in a classroom, where TLBA’s iterative computing process is separated into two phases, unlike standard evolutionary algorithms and swarm intelligence algorithms, and each phase conducts an iterative learning operation. Advanced technologies of Voltage Source Converters (VSCs) enable greater active and reactive power regulation in these networks. Various objectives are addressed for optimal energy management, with the goal of attaining economic and technical advantages by decreasing overall production fuel costs and transmission power losses in AC-DC transmission networks. In this paper, the TLBA is applied for various sorts of nonlinear and multimodal functioning of hybrid alternating current (AC) and multi-terminal direct current (DC) power grids. The proposed TLBA is evaluated on modified IEEE 30-bus and IEEE 57-bus AC-DC networks and compared to other published methods in the literature. Numerical results demonstrate that the proposed TLBA has great effectiveness and robustness indices over the others. Economically, the reduction percentages of 13.84 and 21.94% are achieved for the IEEE 30-bus and IEEE 57-bus test systems when the fuel costs are minimized. Technically, significant improvement in the transmission power losses with reduction 28.01% and 69.83%, are found for the IEEE 30-bus and IEEE 57-bus test system compared to the initial case. Nevertheless, TLBA has faster convergence, higher quality for the final optimal solution, and more power for escaping from convergence to local optima compared to other published methods in the literature.
KW - economic power flow
KW - multi-terminal HVDC grids
KW - Teaching-Learning-Based Algorithm
KW - valve point loading effect
UR - http://www.scopus.com/inward/record.url?scp=85133685295&partnerID=8YFLogxK
U2 - 10.3390/math10132337
DO - 10.3390/math10132337
M3 - Article
AN - SCOPUS:85133685295
SN - 2227-7390
VL - 10
JO - Mathematics
JF - Mathematics
IS - 13
M1 - 2337
ER -