Enhanced Photoelectrocatalytic Performance of ZnO Nanowires for Green Hydrogen Production and Organic Pollutant Degradation

Nawal Al Abass, Talal F. Qahtan, Amani M. Alansi, Almqdad Bubshait, Maria Al-Ghamdi, Zahra Albu, Noof Soltan Albasiry, Hisham Mohammed Aljahfal, Abdulrahman E. Aldossary, Mohammed Tariq Faraj

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

With growing environmental concerns and the need for sustainable energy, multifunctional materials that can simultaneously address water treatment and clean energy production are in high demand. In this study, we developed a cost-effective method to synthesize zinc oxide (ZnO) nanowires via the anodic oxidation of zinc foil. By carefully controlling the anodization time, we optimized the Zn/ZnO-5 min electrode to achieve impressive dual-function performance in terms of effective photoelectrocatalysis for water splitting and waste water treatment. The electrode exhibited a high photocurrent density of 1.18 mA/cm2 at 1.23 V vs. RHE and achieved a solar-to-hydrogen conversion efficiency of 0.55%. A key factor behind this performance is the presence of surface defects, such as oxygen vacancies (OVs), which enhanced charge separation and boosted electron transport. In tests for waste water treatment, the Zn/ZnO-5 min electrode demonstrated the highly efficient degradation of methylene blue (MB) dye, with a reaction rate constant of 0.4211 min−1 when exposed to light and a 1.0 V applied voltage significantly faster than using light or voltage alone. Electrochemical analyses, including impedance spectroscopy and voltammetry, further confirmed the superior charge transfer properties of the electrode under illumination, making it an excellent candidate for both energy conversion and pollutant removal. This study highlights the potential of using simple anodic oxidation to produce scalable and efficient ZnO-based photocatalysts. The dual-function capability of this material could pave the way for large-scale applications in renewable hydrogen production and advanced waste water treatment, offering a promising solution to some of today’s most pressing environmental and energy challenges.

Original languageEnglish
Article number444
JournalMaterials
Volume18
Issue number2
DOIs
StatePublished - Jan 2025

Keywords

  • ZnO nanostructures
  • anodic oxidation
  • photoelectrocatalysis
  • surface defects
  • waste water treatment
  • water oxidation

Fingerprint

Dive into the research topics of 'Enhanced Photoelectrocatalytic Performance of ZnO Nanowires for Green Hydrogen Production and Organic Pollutant Degradation'. Together they form a unique fingerprint.

Cite this