Enhanced efficiency of mono-crystalline Si solar cells utilizing RF sputtered TiO2–Al2O3 blended anti-reflection coating for optimal sunlight transmission and energy conversion

Fatemah H. Alkallas, Shoug M. Alghamdi, Gobinath Velu Kaliyannan, Raja Gunasekaran, Rajasekar Rathanasamy, Amira Ben Gouider Trabelsi, W. B. Elsharkawy, Ayman M. Mostafa, Sathish Kumar Palaniappan

Research output: Contribution to journalArticlepeer-review

24 Scopus citations

Abstract

Currently, surface reflection of incident sunrays over solar cells results in degradation of output performance of the solar cells. This can be sorted out using an antireflection coating. In this investigation, ARC materials such as Titanium dioxide (TiO2), Aluminium oxide (Al2O3) and blended TiO2– Al2O3 were utilized over the mono-crystalline Si (m-Si) solar cells. The ARCs for m-Si solar cell was coated using RF sputtering method. The optical, structural, electrical, I–V characteristics and temperature behavior of solar cell samples with coating and bare cells were studied. The elemental analysis was carried out using X-ray diffraction (XRD) method. The morphological study was conducted using High Resolution Transmission Electron Microscopy (HR-TEM) and Atomic Force Microscope (AFM). The electrical resistivity was measured in dark at room temperature using four-point probe technique. Optical characteristics was determined using UV–visible spectroscopy. It was discovered that the TiO2– Al2O3blend coated cell (I3) shows great performance than the other coatings. I3 solar cell demonstrated high power conversion efficiency (PCE) of 19.42 % and 20.16 %, when exposed to direct sunlight and neodymium radiation in both open and controlled environments. The findings indicate that TiO2– Al2O3blends are a suitable material for ARC applications, since they effectively reduce the incident photons scattering.

Original languageEnglish
Pages (from-to)14865-14877
Number of pages13
JournalCeramics International
Volume50
Issue number9
DOIs
StatePublished - 1 May 2024

Keywords

  • Anti-reflective coating
  • Monocrystalline solar cells
  • Optical properties
  • PCE
  • RF sputter coating

Fingerprint

Dive into the research topics of 'Enhanced efficiency of mono-crystalline Si solar cells utilizing RF sputtered TiO2–Al2O3 blended anti-reflection coating for optimal sunlight transmission and energy conversion'. Together they form a unique fingerprint.

Cite this