Abstract
Brain-computer interfaces (BCIs) establish a communication pathway between the human brain and external devices by decoding neural signals. This study focuses on enhancing the classification of Motor Imagery (MI) within BCI systems by leveraging advanced machine learning and deep learning techniques. The accurate classification of electroencephalogram (EEG) data is crucial for enhancing BCI performance. The BCI architecture processes electroencephalography signals through three critical stages: data pre-processing, feature extraction, and classification. The research evaluates the performance of five traditional machine learning classifiers- K-Nearest Neighbors (KNN), Support Vector Classifier (SVC), Logistic Regression (LR), Random Forest (RF), and Naive Bayes (NB)-using the “PhysioNet EEG Motor Movement/Imagery Dataset”. This dataset encompasses EEG data from various motor tasks, including both actual and imagined movements. Among the traditional classifiers, Random Forest achieved the highest accuracy of 91%, underscoring its efficacy in motor imagery classification within BCI systems. In addition to conventional approaches, the study also explores deep learning techniques, with Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks yielding accuracies of 88.18% and 16.13%, respectively. However, the proposed hybrid model, which synergistically combines CNN and LSTM, significantly surpasses both traditional machine learning and individual deep learning methods, achieving an exceptional accuracy of 96.06%. This substantial improvement highlights the potential of hybrid deep learning models to advance the state of the art in BCI systems, offering a more robust and precise approach to motor imagery classification.
Original language | English |
---|---|
Article number | 27161 |
Journal | Scientific Reports |
Volume | 15 |
Issue number | 1 |
DOIs | |
State | Published - Dec 2025 |
Keywords
- BCI
- Classification
- Deep learning
- Disabilities
- EEG
- GAN’s
- Machine learning
- Motor imagery
- Riemannian geometry