TY - JOUR
T1 - Electrooxidation of ethylene glycol coupled with hydrogen production on porous NiO/Ni@NF nanosheet electrocatalysts
AU - Aladeemy, Saba A.
AU - AlRijraji, Toleen Rayid
AU - Amer, Mabrook S.
AU - Arunachalam, Prabhakarn
AU - Al-Mayouf, Abdullah M.
N1 - Publisher Copyright:
© 2025 The Royal Society of Chemistry.
PY - 2025/3/4
Y1 - 2025/3/4
N2 - Electrooxidation of small organic compounds plays a crucial role in clean and efficient energy. This technology has the potential to transform waste materials into useful fuels and chemicals for renewable energy applications. Recently, ethylene glycol (EG) has gained considerable attention due to its high energy density, making it a great fuel for direct alcohol fuel cells. EG electrooxidation has attracted significant interest as an alternative hydrogen energy source to water splitting due to its sustainability and cost effectiveness. In this study, porous NiO/Nix@NF nanostructured catalysts were synthesized to enhance alkaline EG electrooxidation reactions. Electrodeposition was employed to grow these NiO/Nix structures on nickel foam (NF). The electrochemical characterization results indicate that the porous NiO/Nix@NF catalyst exhibits an onset potential of 1.3 V vs. RHE for the electrochemical oxidation of EG in a 1.0 M KOH solution. Additionally, this electrocatalyst has a maximum electrocatalytic activity of 121.6 mA cm−2, 4.5 times greater than that of the bare Ni@NF catalyst (27.2 mA cm−2). Moreover, Ni/NiO@NF demonstrated excellent electrocatalytic performance for both cathodic and anodic reactions, including EG electrooxidation and hydrogen evolution reaction (HER). The developed NiO/Nix@NF materials catalyzed EG electrolysis with a faradaic efficiency of 45.5%, demonstrating their ability to facilitate electrolysis. The electrocatalytic activity of NiO/Nix@NF porous catalyst toward EG is adequate and stable. Therefore, it appears to be a promising option for using EG in fuel cells.
AB - Electrooxidation of small organic compounds plays a crucial role in clean and efficient energy. This technology has the potential to transform waste materials into useful fuels and chemicals for renewable energy applications. Recently, ethylene glycol (EG) has gained considerable attention due to its high energy density, making it a great fuel for direct alcohol fuel cells. EG electrooxidation has attracted significant interest as an alternative hydrogen energy source to water splitting due to its sustainability and cost effectiveness. In this study, porous NiO/Nix@NF nanostructured catalysts were synthesized to enhance alkaline EG electrooxidation reactions. Electrodeposition was employed to grow these NiO/Nix structures on nickel foam (NF). The electrochemical characterization results indicate that the porous NiO/Nix@NF catalyst exhibits an onset potential of 1.3 V vs. RHE for the electrochemical oxidation of EG in a 1.0 M KOH solution. Additionally, this electrocatalyst has a maximum electrocatalytic activity of 121.6 mA cm−2, 4.5 times greater than that of the bare Ni@NF catalyst (27.2 mA cm−2). Moreover, Ni/NiO@NF demonstrated excellent electrocatalytic performance for both cathodic and anodic reactions, including EG electrooxidation and hydrogen evolution reaction (HER). The developed NiO/Nix@NF materials catalyzed EG electrolysis with a faradaic efficiency of 45.5%, demonstrating their ability to facilitate electrolysis. The electrocatalytic activity of NiO/Nix@NF porous catalyst toward EG is adequate and stable. Therefore, it appears to be a promising option for using EG in fuel cells.
UR - http://www.scopus.com/inward/record.url?scp=105003039377&partnerID=8YFLogxK
U2 - 10.1039/d4cy01450b
DO - 10.1039/d4cy01450b
M3 - Article
AN - SCOPUS:105003039377
SN - 2044-4753
VL - 15
SP - 2571
EP - 2583
JO - Catalysis Science and Technology
JF - Catalysis Science and Technology
IS - 8
ER -