Abstract
In the present work, composition dependent crystal structure, ferroelectric, piezoelectric, and temperature dependent dielectric properties of the BiGaO3-modified (1–x)(0.65Bi1.05FeO3–0.35BaTiO3) (BFBT35–xBG, where x = 0.00–0.03) lead-free ceramics were systematically investigated by solid-state reaction method, followed by water quenching process. The substitution of BG successfully diffuses into the lattice of the BFBT ceramics, without changing the pseudo-cubic structure of the samples. The scanning electron microscopy (SEM) results revealed that the average grain size was increased with BG-content in BFBT system. The BFBT–xBG ceramics showed a maximum in permittivity (ɛmax) at temperatures (Tmax) above 500 °C in the compositional range of 0.00 ≤ x ≤ 0.03. The electro-strain is measured to be 0.125% (d* 33 ~ 250 pm/V) under unipolar fields (5 kV/mm) for BFBT–0.01BG ceramics. The same composition (x = 0.01), large static piezoelectric constant (d33 ~ 165 pC/N) and electromechanical coupling factor (kp ~ 25%) were obtained. The above investigated characterizations suggests that BFBT–BG material is favorable for piezoelectric and high temperature applications.
Original language | English |
---|---|
Pages (from-to) | 93-98 |
Number of pages | 6 |
Journal | Journal of Electroceramics |
Volume | 41 |
Issue number | 1-4 |
DOIs | |
State | Published - 1 Dec 2018 |
Externally published | Yes |
Keywords
- BiFeO–BaTiO
- Dielectric
- Ferroelectric
- Lead-free
- Piezoelectric