TY - JOUR
T1 - Effects of rotating square shape and oriented fins on convective flow of nanofluid contained in a cavity under magnetic field effect
AU - Aly, Abdelraheem M.
AU - Alsedais, Noura
AU - Mahmoud, Ehab Mohamed
N1 - Publisher Copyright:
© 2023 Wiley-VCH GmbH.
PY - 2023/8
Y1 - 2023/8
N2 - This paper deals with thermo-solutal convection by the oriented fins inside a cavity mobilized by a nanofluid. The three fins are located horizontally in the cavity's center surrounded by a rotating square shape. ISPH method carries the circular rotation of the embedded square shape over the oriented fins. Three distinct thermal/solutal conditions of an inner shape including adiabatic (C1), hot (C2), and cold (C3) are conducted. The configurations of the oriented fins in improving thermo-solutal convection are investigated. It is indicated that the expanded fins length supports the rate of heat/mass transfer and delivers a greater overall heat/mass transfer. The lower nanofluid velocity is found at an expanded fins length, adding extra nanoparticles, extra Hartmann number, and cold condition (C3). Adding extra nanoparticles to 20% slows down the nanofluid velocity by 55.28% Increasing the Soret number to two enhances the nanofluid velocity by 69.47%. The circular rotation of an inner shape changes the patterns of nanofluid movements and circulations of temperature and concentration within a cavity. The magnetic field is working effectively at an extra Hartmann number for shrinking the nanofluid velocity and declines the heat/mass transmission in a cavity.
AB - This paper deals with thermo-solutal convection by the oriented fins inside a cavity mobilized by a nanofluid. The three fins are located horizontally in the cavity's center surrounded by a rotating square shape. ISPH method carries the circular rotation of the embedded square shape over the oriented fins. Three distinct thermal/solutal conditions of an inner shape including adiabatic (C1), hot (C2), and cold (C3) are conducted. The configurations of the oriented fins in improving thermo-solutal convection are investigated. It is indicated that the expanded fins length supports the rate of heat/mass transfer and delivers a greater overall heat/mass transfer. The lower nanofluid velocity is found at an expanded fins length, adding extra nanoparticles, extra Hartmann number, and cold condition (C3). Adding extra nanoparticles to 20% slows down the nanofluid velocity by 55.28% Increasing the Soret number to two enhances the nanofluid velocity by 69.47%. The circular rotation of an inner shape changes the patterns of nanofluid movements and circulations of temperature and concentration within a cavity. The magnetic field is working effectively at an extra Hartmann number for shrinking the nanofluid velocity and declines the heat/mass transmission in a cavity.
UR - http://www.scopus.com/inward/record.url?scp=85148609150&partnerID=8YFLogxK
U2 - 10.1002/zamm.202200101
DO - 10.1002/zamm.202200101
M3 - Article
AN - SCOPUS:85148609150
SN - 0044-2267
VL - 103
JO - ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik
JF - ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik
IS - 8
M1 - e202200101
ER -