TY - JOUR
T1 - E-Bayesian and Bayesian Estimation for the Lomax Distribution under Weighted Composite LINEX Loss Function
AU - Al-Bossly, Afrah
N1 - Publisher Copyright:
© 2021 Afrah Al-Bossly.
PY - 2021
Y1 - 2021
N2 - The main contribution of this work is the development of a compound LINEX loss function (CLLF) to estimate the shape parameter of the Lomax distribution (LD). The weights are merged into the CLLF to generate a new loss function called the weighted compound LINEX loss function (WCLLF). Then, the WCLLF is used to estimate the LD shape parameter through Bayesian and expected Bayesian (E-Bayesian) estimation. Subsequently, we discuss six different types of loss functions, including square error loss function (SELF), LINEX loss function (LLF), asymmetric loss function (ASLF), entropy loss function (ENLF), CLLF, and WCLLF. In addition, in order to check the performance of the proposed loss function, the Bayesian estimator of WCLLF and the E-Bayesian estimator of WCLLF are used, by performing Monte Carlo simulations. The Bayesian and expected Bayesian by using the proposed loss function is compared with other methods, including maximum likelihood estimation (MLE) and Bayesian and E-Bayesian estimators under different loss functions. The simulation results show that the Bayes estimator according to WCLLF and the E-Bayesian estimator according to WCLLF proposed in this work have the best performance in estimating the shape parameters based on the least mean averaged squared error.
AB - The main contribution of this work is the development of a compound LINEX loss function (CLLF) to estimate the shape parameter of the Lomax distribution (LD). The weights are merged into the CLLF to generate a new loss function called the weighted compound LINEX loss function (WCLLF). Then, the WCLLF is used to estimate the LD shape parameter through Bayesian and expected Bayesian (E-Bayesian) estimation. Subsequently, we discuss six different types of loss functions, including square error loss function (SELF), LINEX loss function (LLF), asymmetric loss function (ASLF), entropy loss function (ENLF), CLLF, and WCLLF. In addition, in order to check the performance of the proposed loss function, the Bayesian estimator of WCLLF and the E-Bayesian estimator of WCLLF are used, by performing Monte Carlo simulations. The Bayesian and expected Bayesian by using the proposed loss function is compared with other methods, including maximum likelihood estimation (MLE) and Bayesian and E-Bayesian estimators under different loss functions. The simulation results show that the Bayes estimator according to WCLLF and the E-Bayesian estimator according to WCLLF proposed in this work have the best performance in estimating the shape parameters based on the least mean averaged squared error.
UR - http://www.scopus.com/inward/record.url?scp=85122246482&partnerID=8YFLogxK
U2 - 10.1155/2021/2101972
DO - 10.1155/2021/2101972
M3 - Article
C2 - 34931123
AN - SCOPUS:85122246482
SN - 1687-5265
VL - 2021
JO - Computational Intelligence and Neuroscience
JF - Computational Intelligence and Neuroscience
M1 - 2101972
ER -