TY - JOUR
T1 - Durability Enhancement of Sustainable Concrete Composites Comprising Waste Metalized Film Food Packaging Fibers and Palm Oil Fuel Ash
AU - Alyousef, Rayed
AU - Mohammadhosseini, Hossein
AU - Ebid, Ahmed Abdel Khalek
AU - Alabduljabbar, Hisham
AU - Ngian, Shek Poi
AU - Mohamed, Abdeliazim Mustafa
N1 - Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2022/5/1
Y1 - 2022/5/1
N2 - The utilization of waste materials in sustainable and green concrete manufacturing is particularly appealing because of the low cost of waste resources, the saving of landfill space, and the development and enhancement of concrete qualities. This paper investigates the strength and durability of green concrete composites made of waste metalized film food packaging (MFP) fibers and palm oil fuel ash (POFA). Compressive and tensile strengths, carbonation, drying shrinkage, electrical resistivity, and rapid chloride penetration tests in concrete mixtures are among the properties explored. With ordinary Portland cement (OPC), MFP fibers of 20 mm in length and six-volume fractions ranging from 0 to 1.25% were employed. Another six concrete mixes were made with 20% POFA in place of OPC. The results showed that adding MFP fibers to concrete mixes reduced their compressive strength. Despite a minor reduction in compressive strength, the inclusion of MFP fibers significantly increased tensile strength. The findings show that the combination of MFP fibers with POFA substantially impacts concrete durability. The addition of MFP fibers to concrete mixes resulted in a reduction in carbonation and drying shrinkage. The chloride penetration of specimens was also reduced, whereas the electrical resistivity of reinforced samples rose by nearly 80% compared to ordinary concrete.
AB - The utilization of waste materials in sustainable and green concrete manufacturing is particularly appealing because of the low cost of waste resources, the saving of landfill space, and the development and enhancement of concrete qualities. This paper investigates the strength and durability of green concrete composites made of waste metalized film food packaging (MFP) fibers and palm oil fuel ash (POFA). Compressive and tensile strengths, carbonation, drying shrinkage, electrical resistivity, and rapid chloride penetration tests in concrete mixtures are among the properties explored. With ordinary Portland cement (OPC), MFP fibers of 20 mm in length and six-volume fractions ranging from 0 to 1.25% were employed. Another six concrete mixes were made with 20% POFA in place of OPC. The results showed that adding MFP fibers to concrete mixes reduced their compressive strength. Despite a minor reduction in compressive strength, the inclusion of MFP fibers significantly increased tensile strength. The findings show that the combination of MFP fibers with POFA substantially impacts concrete durability. The addition of MFP fibers to concrete mixes resulted in a reduction in carbonation and drying shrinkage. The chloride penetration of specimens was also reduced, whereas the electrical resistivity of reinforced samples rose by nearly 80% compared to ordinary concrete.
KW - electrical resistivity
KW - rapid chloride penetration
KW - strength properties
KW - sustainable concrete composites
KW - waste metalized polypropylene fibers
UR - http://www.scopus.com/inward/record.url?scp=85129807061&partnerID=8YFLogxK
U2 - 10.3390/su14095253
DO - 10.3390/su14095253
M3 - Article
AN - SCOPUS:85129807061
SN - 2071-1050
VL - 14
JO - Sustainability (Switzerland)
JF - Sustainability (Switzerland)
IS - 9
M1 - 5253
ER -